In: Math
a)
| sample mean | x̄= | 69.0000 | 
| sample size | n= | 50.00 | 
| population std deviation | σ= | 4.000 | 
| standard errror of mean = | σx=σ/√n= | 0.5657 | 
| for 90 % CI value of z= | 1.645 | |||
| margin of error E=z*std error = | 0.930 | |||
| lower confidence bound=sample mean-margin of error= | 68.070 | |||
| Upper confidence bound=sample mean +margin of error= | 69.930 | |||
b)
| for 95 % CI value of z= | 1.960 | |||
| margin of error E=z*std error = | 1.109 | |||
| lower confidence bound=sample mean-margin of error= | 67.891 | |||
| Upper confidence bound=sample mean +margin of error= | 70.109 | |||
c)
| standard errror of mean = | σx=σ/√n= | 0.1789 | 
| for 90 % CI value of z= | 1.645 | |||
| margin of error E=z*std error = | 0.294 | |||
| lower confidence bound=sample mean-margin of error= | 68.706 | |||
| Upper confidence bound=sample mean +margin of error= | 69.294 | |||
d)
| for95% CI crtiical Z = | 1.96 | |
| standard deviation σ= | 4.000 | |
| margin of error E = | 0.1 | |
| required sample size n=(zσ/E)2 = | 6147 | |