Question

In: Physics

You are looking at a current carrying wire. The current is heading straight for you toward your eye.

You are looking at a current carrying wire. The current is heading straight for you toward your eye. The magnetic field lines and field strength are best described by:

The field lines point in away from wire, and drop off as \(1 / r^{2}\)

The field lines wrap around the wire CCW and drop off as \(1 / \mathrm{r}\)

The field lines wrap around the wire CCW and drop off as \(1 / r^{2}\)

The field lines point in toward wire, and drop off as \(1 / \mathrm{r}\)

The field lines wrap around the wire \(\mathrm{CW}\) and drop off as \(1 / \mathrm{r}\)

The field lines point in toward wire, and drop off as \(1 / r^{2}\)

The field lines point in away from wire, and drop off as \(1 / \mathrm{r}\)

The field lines wrap around the wire \(\mathrm{CW}\) and drop off as \(1 / \mathrm{r}^{2}\)

Solutions

Expert Solution


Related Solutions

What is the direction of the magnetic field of a straight, current-carrying wire?
What is the direction of the magnetic field of a straight, current-carrying wire?
A long, straight wire carrying a current of 3.00 A moves with a constant speed v...
A long, straight wire carrying a current of 3.00 A moves with a constant speed v to the right. A 5-turn circular coil of diameter 1.25 cm, and resistance of 3.25 µΩ, lies stationary in the same plane as the straight wire. At some initial time, the wire is at a distance d = 19.5 cm from the center of the coil. 4.55 s later, the wire is at a distance 2d from the center of the coil. What is...
A long, straight wire carrying a current I1 is placed on a horizontal table in front...
A long, straight wire carrying a current I1 is placed on a horizontal table in front of you and the direction of the current points +x axis. The magnetic field produced by the current I1 at a point 5 cm above the wire is 0.2 T. A second parallel wire carrying a current I2 = 3I1 is placed 10 cm above the first wire and the direction of the current also points +x axis. What is the magnitude of the...
A long straight wire lies on a horizontal table and carries an ever-increasing current toward the...
A long straight wire lies on a horizontal table and carries an ever-increasing current toward the north. Two coils of wire lie flat on the table, on on either side of the wire. When viewed from above, the direction of the induced current is clockwise for the west coil counterclockwise for the west coil There is no induced current in the west coil clockwise for the east coil counterclockwise for the east coil There is no induced current in the...
The magnetic field at a distance ro from a long straight wire carrying a current I...
The magnetic field at a distance ro from a long straight wire carrying a current I is given by B=u0I/2PI ro . For the statements below, circle the word or phrase that correctly completes the sentence. A) For a fixed current of 3.00 A in the wire, the magnetic field sensed by a Hall probe will _________________ if the distance r0is changed from 0.6 cm to 1.2 cm. (double, triple, reduce to half, reduce by 0.6 mT) B) If the...
A long straight wire carrying a current I = 1.4 amps flowing in the +y direction...
A long straight wire carrying a current I = 1.4 amps flowing in the +y direction has a rectangular wire to its right. The length of the wire (parallel to the straight wire) is .7 m and its width is .4 m. The left side of the rectangular wire is originally .5 meters away from the straight wire. A force of 8 Newtons to the right is applied to the rectangular wire which is initially at rest. Assume the resistance...
) A thin, straight wire carrying a current Iw=3.7A runs through the center of a solenoid,...
) A thin, straight wire carrying a current Iw=3.7A runs through the center of a solenoid, as shown below. The solenoid has a radius R=0.12m, a length L=0.9m, and has N=75 turns. A current Is=2.3A flows through the solenoid. An electron is a distance d=0.04m in the y direction from the center of the solenoid and is moving with velocity v=9200m/s in the x direction. (a) (2 points) What is the magnetic field B⃗s at the location of the electron...
1. A metal loop moves at constant velocity toward a long wire carrying a steady current...
1. A metal loop moves at constant velocity toward a long wire carrying a steady current I = 2.0 A. The current induced in the loop is: A. Directed clockwise. B. directed counterclockwise. C. Zero. D. Cannot tell, more information is needed. 2. Loop A in the figure shown is part of a simple circuit with switch open.  Loop B is another one that lies below Loop A. to A When the switch is closed, there is an induced current generated...
The magnetic field 38.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 38.0 cm away from a long, straight wire carrying current 4.00 A is 2110 nT. (a) At what distance is it 211 nT? 380 cm (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 38.0 cm away from the middle of the straight cord, in the plane of the two wires. 16.6 nT (c) At...
The magnetic field 39.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 39.0 cm away from a long, straight wire carrying current 4.00 A is 2050 nT. (a) At what distance is it 205 nT? cm (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 39.0 cm away from the middle of the straight cord, in the plane of the two wires. nT (c) At what distance...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT