In: Statistics and Probability
PLEASE SHOW FORMULAS IN EXCEL
Case: Performance Lawn Equipment
PLE sells small tractors worldwide, with sales regions including North America, South America, Europe, and the Pacific Rim. Three years ago a new region was opened to serve China, where a booming market for small tractors has been established. PLE has always emphasized quality and considers the quality it builds into its products as its primary selling point. In the past 2 years, PLE has also emphasized the ease of use of their products.
Before digging into the details of operations, Elizabeth Burke wants to gain an overview of PLE’s overall business performance and market position by examining the information provided in the database.
3. For the EUR data only in the worksheet, Tractor Unit Sales, use the exponential smoothing method to develop the forecasting models with various values of α (α = 0.1, 0.2, …, 0.9), then calculate MAPE to identify the best value of α.
Tractor Unit Sales |
||||||
Month |
NA |
SA |
Eur |
Pac |
China |
World |
Jan-10 |
570 |
250 |
560 |
212 |
0 |
1592 |
Feb-10 |
611 |
270 |
600 |
230 |
0 |
1711 |
Mar-10 |
630 |
260 |
680 |
240 |
0 |
1810 |
Apr-10 |
684 |
270 |
650 |
263 |
0 |
1867 |
May-10 |
650 |
280 |
580 |
269 |
0 |
1779 |
Jun-10 |
600 |
270 |
590 |
280 |
0 |
1740 |
Jul-10 |
512 |
264 |
760 |
290 |
0 |
1826 |
Aug-10 |
500 |
280 |
645 |
270 |
0 |
1695 |
Sep-10 |
478 |
290 |
650 |
263 |
0 |
1681 |
Oct-10 |
455 |
280 |
670 |
258 |
0 |
1663 |
Nov-10 |
407 |
290 |
888 |
240 |
0 |
1825 |
Dec-10 |
360 |
280 |
850 |
230 |
0 |
1720 |
Jan-11 |
571 |
320 |
620 |
250 |
0 |
1761 |
Feb-11 |
650 |
350 |
760 |
275 |
0 |
2035 |
Mar-11 |
740 |
390 |
742 |
270 |
0 |
2142 |
Apr-11 |
840 |
440 |
780 |
280 |
0 |
2340 |
May-11 |
830 |
470 |
690 |
290 |
0 |
2280 |
Jun-11 |
760 |
490 |
721 |
300 |
0 |
2271 |
Jul-11 |
681 |
481 |
680 |
312 |
0 |
2154 |
Aug-11 |
670 |
460 |
711 |
305 |
0 |
2146 |
Sep-11 |
640 |
460 |
695 |
290 |
0 |
2085 |
Oct-11 |
620 |
440 |
650 |
260 |
0 |
1970 |
Nov-11 |
570 |
436 |
680 |
250 |
0 |
1936 |
Dec-11 |
533 |
420 |
657 |
240 |
0 |
1850 |
Jan-12 |
620 |
510 |
610 |
250 |
10 |
2000 |
Feb-12 |
792 |
590 |
680 |
250 |
12 |
2324 |
Mar-12 |
890 |
610 |
730 |
260 |
20 |
2510 |
Apr-12 |
960 |
600 |
820 |
270 |
22 |
2672 |
May-12 |
1040 |
620 |
810 |
290 |
20 |
2780 |
Jun-12 |
1032 |
640 |
807 |
310 |
24 |
2813 |
Jul-12 |
1006 |
590 |
760 |
340 |
20 |
2716 |
Aug-12 |
910 |
600 |
720 |
320 |
31 |
2581 |
Sep-12 |
803 |
670 |
660 |
313 |
30 |
2476 |
Oct-12 |
730 |
630 |
630 |
290 |
37 |
2317 |
Nov-12 |
699 |
710 |
603 |
280 |
32 |
2324 |
Dec-12 |
647 |
570 |
570 |
260 |
33 |
2080 |
Jan-13 |
730 |
650 |
500 |
287 |
35 |
2202 |
Feb-13 |
930 |
680 |
590 |
290 |
50 |
2540 |
Mar-13 |
1160 |
724 |
620 |
300 |
63 |
2867 |
Apr-13 |
1510 |
730 |
730 |
310 |
68 |
3348 |
May-13 |
1650 |
760 |
740 |
330 |
70 |
3550 |
Jun-13 |
1490 |
800 |
720 |
340 |
82 |
3432 |
Jul-13 |
1460 |
840 |
670 |
350 |
80 |
3400 |
Aug-13 |
1390 |
830 |
610 |
341 |
90 |
3261 |
Sep-13 |
1360 |
820 |
599 |
330 |
100 |
3209 |
Oct-13 |
1340 |
810 |
560 |
320 |
102 |
3132 |
Nov-13 |
1240 |
827 |
550 |
300 |
110 |
3027 |
Dec-13 |
1103 |
750 |
520 |
290 |
114 |
2777 |
Jan-14 |
1250 |
780 |
480 |
200 |
111 |
2821 |
Feb-14 |
1550 |
805 |
523 |
210 |
121 |
3209 |
Mar-14 |
1820 |
830 |
560 |
220 |
123 |
3553 |
Apr-14 |
2010 |
890 |
570 |
230 |
120 |
3820 |
May-14 |
2230 |
930 |
590 |
253 |
130 |
4133 |
Jun-14 |
2490 |
980 |
600 |
270 |
136 |
4476 |
Jul-14 |
2440 |
1002 |
580 |
280 |
134 |
4436 |
Aug-14 |
2334 |
970 |
570 |
250 |
132 |
4256 |
Sep-14 |
2190 |
960 |
550 |
230 |
137 |
4067 |
Oct-14 |
2080 |
930 |
530 |
220 |
130 |
3890 |
Nov-14 |
2050 |
920 |
517 |
190 |
139 |
3816 |
Dec-14 |
2004 |
902 |
490 |
190 |
131 |
3717 |
Month | Eur | Forecast(0.1) | Error(F1) | Absolute Error(F1) | (Sum|Ai-Fi|/n)*100 |
10-Jan | 560 | #N/A | #N/A | #N/A | #N/A |
10-Feb | 600 | 560 | -40 | 40 | 0.066666667 |
10-Mar | 680 | 564 | -116 | 116 | 0.170588235 |
10-Apr | 650 | 575.6 | -74.4 | 74.4 | 0.114461538 |
10-May | 580 | 583.04 | 3.04 | 3.04 | 0.005241379 |
10-Jun | 590 | 582.736 | -7.264 | 7.264 | 0.012311864 |
10-Jul | 760 | 583.4624 | -176.5376 | 176.5376 | 0.232286316 |
10-Aug | 645 | 601.11616 | -43.88384 | 43.88384 | 0.068036961 |
10-Sep | 650 | 605.504544 | -44.495456 | 44.495456 | 0.068454548 |
10-Oct | 670 | 609.9540896 | -60.0459104 | 60.0459104 | 0.089620762 |
10-Nov | 888 | 615.9586806 | -272.0413194 | 272.0413194 | 0.306352837 |
10-Dec | 850 | 643.1628126 | -206.8371874 | 206.8371874 | 0.243337868 |
11-Jan | 620 | 663.8465313 | 43.84653132 | 43.84653132 | 0.070720212 |
11-Feb | 760 | 659.4618782 | -100.5381218 | 100.5381218 | 0.132287002 |
11-Mar | 742 | 669.5156904 | -72.48430963 | 72.48430963 | 0.097687749 |
11-Apr | 780 | 676.7641213 | -103.2358787 | 103.2358787 | 0.132353691 |
11-May | 690 | 687.0877092 | -2.912290802 | 2.912290802 | 0.004220711 |
11-Jun | 721 | 687.3789383 | -33.62106172 | 33.62106172 | 0.046631154 |
11-Jul | 680 | 690.7410445 | 10.74104445 | 10.74104445 | 0.015795654 |
11-Aug | 711 | 689.66694 | -21.33305999 | 21.33305999 | 0.030004304 |
11-Sep | 695 | 691.800246 | -3.199753995 | 3.199753995 | 0.004603963 |
11-Oct | 650 | 692.1202214 | 42.1202214 | 42.1202214 | 0.064800341 |
11-Nov | 680 | 687.9081993 | 7.908199264 | 7.908199264 | 0.011629705 |
11-Dec | 657 | 687.1173793 | 30.11737934 | 30.11737934 | 0.04584076 |
12-Jan | 610 | 684.1056414 | 74.1056414 | 74.1056414 | 0.121484658 |
12-Feb | 680 | 676.6950773 | -3.304922737 | 3.304922737 | 0.00486018 |
12-Mar | 730 | 677.0255695 | -52.97443046 | 52.97443046 | 0.072567713 |
12-Apr | 820 | 682.3230126 | -137.6769874 | 137.6769874 | 0.167898765 |
12-May | 810 | 696.0907113 | -113.9092887 | 113.9092887 | 0.140628751 |
12-Jun | 807 | 707.4816402 | -99.51835981 | 99.51835981 | 0.123318909 |
12-Jul | 760 | 717.4334762 | -42.56652383 | 42.56652383 | 0.056008584 |
12-Aug | 720 | 721.6901286 | 1.690128556 | 1.690128556 | 0.002347401 |
12-Sep | 660 | 721.5211157 | 61.5211157 | 61.5211157 | 0.093213812 |
12-Oct | 630 | 715.3690041 | 85.36900413 | 85.36900413 | 0.135506356 |
12-Nov | 603 | 706.8321037 | 103.8321037 | 103.8321037 | 0.172192543 |
12-Dec | 570 | 696.4488933 | 126.4488933 | 126.4488933 | 0.221840164 |
13-Jan | 500 | 683.804004 | 183.804004 | 183.804004 | 0.367608008 |
13-Feb | 590 | 665.4236036 | 75.42360361 | 75.42360361 | 0.127836616 |
13-Mar | 620 | 657.8812432 | 37.88124325 | 37.88124325 | 0.061098779 |
13-Apr | 730 | 654.0931189 | -75.90688108 | 75.90688108 | 0.103982029 |
13-May | 740 | 661.683807 | -78.31619297 | 78.31619297 | 0.105832693 |
13-Jun | 720 | 669.5154263 | -50.48457367 | 50.48457367 | 0.070117463 |
13-Jul | 670 | 674.5638837 | 4.563883696 | 4.563883696 | 0.006811767 |
13-Aug | 610 | 674.1074953 | 64.10749533 | 64.10749533 | 0.105094255 |
13-Sep | 599 | 667.6967458 | 68.69674579 | 68.69674579 | 0.114685719 |
13-Oct | 560 | 660.8270712 | 100.8270712 | 100.8270712 | 0.180048341 |
13-Nov | 550 | 650.7443641 | 100.7443641 | 100.7443641 | 0.183171571 |
13-Dec | 520 | 640.6699277 | 120.6699277 | 120.6699277 | 0.232057553 |
14-Jan | 480 | 628.6029349 | 148.6029349 | 148.6029349 | 0.309589448 |
14-Feb | 523 | 613.7426414 | 90.74264142 | 90.74264142 | 0.173504095 |
14-Mar | 560 | 604.6683773 | 44.66837728 | 44.66837728 | 0.079764959 |
14-Apr | 570 | 600.2015396 | 30.20153955 | 30.20153955 | 0.052985157 |
14-May | 590 | 597.1813856 | 7.181385598 | 7.181385598 | 0.01217184 |
14-Jun | 600 | 596.463247 | -3.536752962 | 3.536752962 | 0.005894588 |
14-Jul | 580 | 596.8169223 | 16.81692233 | 16.81692233 | 0.028994694 |
14-Aug | 570 | 595.1352301 | 25.1352301 | 25.1352301 | 0.044096895 |
14-Sep | 550 | 592.6217071 | 42.62170709 | 42.62170709 | 0.077494013 |
14-Oct | 530 | 588.3595364 | 58.35953638 | 58.35953638 | 0.110112333 |
14-Nov | 517 | 582.5235827 | 65.52358274 | 65.52358274 | 0.126738071 |
14-Dec | 490 | 575.9712245 | 85.97122447 | 85.97122447 | 0.175451479 |
567.374102 | |||||
Total= | 6.200944423 | ||||
MAPE | 10.16548266 |
The entire table was copied and pasted to excel.As the question demnads answer about the column EUR cell, we go on with deleting other columns.Now we have values of the variable EUR along with the tie series data In time column.Now we need to apply Exponential smoothening method over the values of EUR.Go to DATA>Data Analysis Tool Pack(If there isn' any dat aanlysis toool pack install it in excel)>Click exponentiaal smoothening>Click the range of the variable (B2-B61) in the inpur range.Place 1-alpha in place of damping facto.Suppose alpha=0.1,1-alpha=0.9>click the checkbox chart>click ok.
You will get the exponential smoothjening forecast for alpha 0.1.
In next column execute the absolute error.
apply the formula (=ABS(B2-C2)) and get the absolute error for first valure of EUR.To repeat the same formul;a for rest of the values,double click on the the cell and drag down till 61th row.
Now to calculate MAPE we need (Sum(ABS(actual value-forecast value))/n)*100
We have the ABS(actual value-forecast value) part. In the next column divide this with actual value in every row.
Apply autosum over the obtained values.
To get MAPE divide it by n multiply it by 100.
repeat the same for various values of alpha.