In: Finance
suppose the standard deviation of a stocks return is 25% per year and the riskless return is 10% APR.Answer the below questions using the Black -Scholas OPM. A. What is a 6 month call option on this stock worth if the strick price is $90 and the stock price is(Po)is currently at$104? B.what is the exercise value and the time premiumof this optrion? C.Everything else being equal,what is the value of a 6 month put option on the common stock?Use call- put parity.
a
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*r^(-r*t) | ||||||
Where | ||||||
S = Current price = | 104 | |||||
t = time to expiry = | 0.5 | |||||
K = Strike price = | 90 | |||||
r = Risk free rate = | 10.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 25% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(104/90)+(0.1-0+0.25^2/2)*0.5)/(0.25*0.5^(1/2)) | ||||||
d1 = 1.189106 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =1.189106-0.25*0.5^(1/2) | ||||||
d2 = 1.012329 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.882801 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.84431 | ||||||
Value of call= 104*0.882801-0.84431*90*e^(-0.1*0.5) | ||||||
Value of call= 19.53 |
b
Exercise value = Current price-strike = 104-90=14
Time value = value of call-exercise value = 19.53-14 = 5.53
C
As per put call parity | ||||||
Call price + PV of exercise price = Spot price + Put price | ||||||
19.53+90*e^(-0.1*0.5)=104+Put value | ||||||
Put value = 1.14 |