Question

In: Other

Water flowing at a rate of 100 Kg/min at 100 oC and 20 bars is heated...

Water flowing at a rate of 100 Kg/min at 100 oC and 20 bars is heated at constant pressure to 400 oC. What are the initial and final phases of the water (subcooled liquid, saturated liquid, saturated steam, or superheated steam)? (saturation temperature of water at 20 bars is 212.4 oC).

Solutions

Expert Solution


Related Solutions

Water flowing at a rate of 0.03 kg/s is heated from 20 to 40°C in a...
Water flowing at a rate of 0.03 kg/s is heated from 20 to 40°C in a horizontal pipe (inside diameter = 3 cm). The inside pipe surface temperature is 70°C. Estimate the convective heat transfer coefficient if the pipe is 1 m long. Assume forced convection conditions.  Ts is not held constant! Properties of Water 20°C 30°C 40°C ρ (kg/m3) 998.2 995.7 992.2 k (W/mK) 0.597 0.615 0.633 μ (Pa s) 993.414 x 10-6 792.377 x 10-6 658.026 x 10-6 Cp...
Water is flowing at the rate of 5m3/min into a tank in the form of a...
Water is flowing at the rate of 5m3/min into a tank in the form of a cone of altitude 20 m and a base radius of 10 m, with its vertex in the downward direction. a) How fast is the water level rising when the water is 8m deep? b) If the tank has a leak at the bottom and the water level is rising at 0.084 m/sec when the water is 8 m deep, how fast is the water...
Water is flowing at the rate of 5 m3 /min into a tank in the form...
Water is flowing at the rate of 5 m3 /min into a tank in the form of a cone of altitude 20 m and a base radius of 10 m, with its vertex in the downward direction. a) How fast is the water level rising when the water is 8m deep? b) If the tank has a leak at the bottom and the water level is rising at 0.084 m/sec when the water is 8 m deep, how fast is...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counter flow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: Rf i...
Water at the rate of 30,000 lbm/h [3.783 kg/s] is heated from 100 to 130◦F [37.78...
Water at the rate of 30,000 lbm/h [3.783 kg/s] is heated from 100 to 130◦F [37.78 to 54.44◦C] in a shell-and-tube heat exchanger. On the shell side one pass is used with water as the heating fluid, 15,000 lbm/h [1.892 kg/s], entering the exchanger at 200◦F [93.33◦C]. The overall heat-transfer coefficient is 250 Btu/h · ft2 · ◦F [1419 W/m2 · ◦C], and the average water velocity in the 34 -in [1.905-cm] diameter tubes is 1.2 ft/s [0.366 m/s]. Because...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter current heat exchanger at 318 K and is heated by an oil stream entering at 393 K at a rate of 2.85 kg/s (Cp=1.89 kJ/kg. K). The overall U=290 W/m2. K and the area A=20 m2. Calculate the heat transfer rate and the exit water temperature.
Water flows through a shower head steadily at a rate of 8 kg/min. The water is...
Water flows through a shower head steadily at a rate of 8 kg/min. The water is heated in an electric water heater from 158C to 458C. In an attempt to conserve energy, it is proposed to pass the drained warm water at a temperature of 388C through a heat exchanger to preheat the incoming cold water. Design a heat exchanger that is suitable for this task, and discuss the potential savings in energy and money for your area.
a) A salt-water tank has pure water flowing into it at 5 L/min. The contents of...
a) A salt-water tank has pure water flowing into it at 5 L/min. The contents of the tank are kept thoroughly mixed, and the contents flow out at 5 L/min. Initially, the tank contains 1 kg of salt in 10L of water. How much salt will be in the tank after 20 minutes? Let ?? represent the amount of salt in the tank at time t and let ?? represent the volume of saltwater in the tank at time t....
Water at 700 oC has a specific volume of 0.02600m3/kg. Determine the pressure of the water...
Water at 700 oC has a specific volume of 0.02600m3/kg. Determine the pressure of the water based on a) ideal gas equation, b) the generalized compressibility chart and c)the steam tables. (d) Determine the error involved in cases (a) & (b).
Convection Heat transfer internal flow Consider water flowing in a heated tube. The tube is 14...
Convection Heat transfer internal flow Consider water flowing in a heated tube. The tube is 14 m long with an inner diameter of 1 cm. The heat is added at 1500 W/m2 uniformly along the tube. Water flows at 0.3 m/s. Use the following water property ? = 1000 kg/m3, ? = 1.4 × 10?3 kg/m·s, cp = 4.2 kJ/kg·K, k = 0.58 W/m·K, and determine 1. Heat transfer coefficient at the tube exit. 2. Tube surface temperature at the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT