Question

In: Other

Water flowing at a rate of 100 Kg/min at 100 oC and 20 bars is heated...

Water flowing at a rate of 100 Kg/min at 100 oC and 20 bars is heated at constant pressure to 400 oC. What are the initial and final phases of the water (subcooled liquid, saturated liquid, saturated steam, or superheated steam)? (saturation temperature of water at 20 bars is 212.4 oC).

Solutions

Expert Solution


Related Solutions

Water is flowing at the rate of 5m3/min into a tank in the form of a...
Water is flowing at the rate of 5m3/min into a tank in the form of a cone of altitude 20 m and a base radius of 10 m, with its vertex in the downward direction. a) How fast is the water level rising when the water is 8m deep? b) If the tank has a leak at the bottom and the water level is rising at 0.084 m/sec when the water is 8 m deep, how fast is the water...
Water is flowing at the rate of 5 m3 /min into a tank in the form...
Water is flowing at the rate of 5 m3 /min into a tank in the form of a cone of altitude 20 m and a base radius of 10 m, with its vertex in the downward direction. a) How fast is the water level rising when the water is 8m deep? b) If the tank has a leak at the bottom and the water level is rising at 0.084 m/sec when the water is 8 m deep, how fast is...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counter flow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: Rf i...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter current heat exchanger at 318 K and is heated by an oil stream entering at 393 K at a rate of 2.85 kg/s (Cp=1.89 kJ/kg. K). The overall U=290 W/m2. K and the area A=20 m2. Calculate the heat transfer rate and the exit water temperature.
Water flows through a shower head steadily at a rate of 8 kg/min. The water is...
Water flows through a shower head steadily at a rate of 8 kg/min. The water is heated in an electric water heater from 158C to 458C. In an attempt to conserve energy, it is proposed to pass the drained warm water at a temperature of 388C through a heat exchanger to preheat the incoming cold water. Design a heat exchanger that is suitable for this task, and discuss the potential savings in energy and money for your area.
a) A salt-water tank has pure water flowing into it at 5 L/min. The contents of...
a) A salt-water tank has pure water flowing into it at 5 L/min. The contents of the tank are kept thoroughly mixed, and the contents flow out at 5 L/min. Initially, the tank contains 1 kg of salt in 10L of water. How much salt will be in the tank after 20 minutes? Let ?? represent the amount of salt in the tank at time t and let ?? represent the volume of saltwater in the tank at time t....
Water at 700 oC has a specific volume of 0.02600m3/kg. Determine the pressure of the water...
Water at 700 oC has a specific volume of 0.02600m3/kg. Determine the pressure of the water based on a) ideal gas equation, b) the generalized compressibility chart and c)the steam tables. (d) Determine the error involved in cases (a) & (b).
Convection Heat transfer internal flow Consider water flowing in a heated tube. The tube is 14...
Convection Heat transfer internal flow Consider water flowing in a heated tube. The tube is 14 m long with an inner diameter of 1 cm. The heat is added at 1500 W/m2 uniformly along the tube. Water flows at 0.3 m/s. Use the following water property ? = 1000 kg/m3, ? = 1.4 × 10?3 kg/m·s, cp = 4.2 kJ/kg·K, k = 0.58 W/m·K, and determine 1. Heat transfer coefficient at the tube exit. 2. Tube surface temperature at the...
A mixture of water at 500 kPa and a quality of 20% is heated in an...
A mixture of water at 500 kPa and a quality of 20% is heated in an isobaric process until its volume becomes 0.52261 m^3/kg. Find: a. the change in specifc volume b. the work/unit mass c. the change in specific internal energy d. the heat transferred/unit mass e. the change in specific enthalpy f. the final pressure g. the final temperature
A mass of 70 kg of 15-wt-% solution of H2SO4 in water at 70 oC is...
A mass of 70 kg of 15-wt-% solution of H2SO4 in water at 70 oC is mixed at atmospheric pressure with 110 kg of 80-wt-% H2SO4 at 38oC. During the process heat in the amount of 20,000 kJ is transferred from the system. Determine the temperature of the product solution
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT