In: Finance
A fast growth share has the first dividend (t=1) of $1.48. Dividends are then expected to grow at a rate of 6 percent p.a. for a further 2 years. It then will settle to a constant-growth rate of 2.3 percent. . If the required rate of return is 12 percent, what is the current price of the share? (
D1 = $ 1.48
D2 = D1 x (1+g) = $ 1.48 x 1.06 = $ 1.5688
D3 = D2 x (1+g) = $ 1.5688 x 1.06 = $ 1.662928
D4 = D3 x (1+g) = $ 1.662928 x 1.023 = $ 1.701175344
Price of share in year 3, P3 can be computed using dividend discount model as,
P3 = D4/(r-g)
r = cost of capital = 12 % or 0.12
g = Constant growth rate of dividends = 2.3 % or 0.023
P3 = $ 1.701175344/ (0.12 – 0.023)
= $ 1.701175344/ 0.097
= $ 17.5378901443299
Current stock price, P = D1/ (1+r) + D2/ (1+r) 2 + D3/ (1+r) 3 + P3/ (1+r) 3
= $ 1.48/ (1+0.12) + $ 1.5688/ (1+0.12) 2 + $ 1.662928/ (1+0.12) 3+ $17.5378901443299/ (1+0.12) 3
= $ 1.48/ (1.12) + $ 1.5688/ (1.12) 2 + $ 1.662928/ (1.12) 3 + $ 17.5378901443299/ (1.12) 3
= $ 1.48/ 1.12 + $ 1.5688/ 1.2544 + $ 1.662928/ 1.404928 + $ 17.5378901443299/ 1.404928
= $ 1.32142857142857 + $ 1.25063775510204 + $ 1.18363930393586 + $ 12.4831237930555
= $ 16.23882942352197 or $ 16.24
Current price of each share is $ 16.24