Question

In: Math

4 parts following these instructions Find the critical numbers for f and the open intervals on...

4 parts following these instructions

Find the critical numbers for f and the open intervals on which f is increasing (decreasing)

For the first question, your answer should be a comma-separated list of x values or the word "none". For the other two, your answer should either be a single interval, such as (0,1), a comma-separated list of intervals, such as (-inf, 2), (3,4), or the word "none".

answeres needed for each part

1.   The critical numbers for f are
2.   f is increasing on the intervals
3.   f is decreasing on the intervals

part 1)

Let f(x)=18+3x−x^2

part 2)

let f(x)= 5+2x-x^3

part 3)

let f(x)=6x-6

part 4)

let f(x)= 6x^2-8x^4

Solutions

Expert Solution


Related Solutions

5. For the function ?(?)=−3?^4 −12?^3 Find the domain and intercepts. Find the critical numbers, intervals...
5. For the function ?(?)=−3?^4 −12?^3 Find the domain and intercepts. Find the critical numbers, intervals where f (x) is increasing and decreasing, and any local maximum and local minimum points (find both coordinates). Find the intervals where f (x) is concave up and concave down and any inflection points (find both coordinates). Use this information to sketch the graph of f (x).
Let f(x)=(x^2)/(x-2) Find the following a) Intervals of increase/decrease (approximate the critical numbers to the nearest...
Let f(x)=(x^2)/(x-2) Find the following a) Intervals of increase/decrease (approximate the critical numbers to the nearest thousandths be sure to show the values tested) b) Local maxima and local minima c) Intervals of concavity and points of inflection (show all testing) d) Graph (x^2)/x-2 Label the intercepts,max/min, and inflection points. Indicate the window used on your calculator
f(x)= x5 − 5x Find the x− and y−intercept, critical numbers, increasing and decreasing intervals, local...
f(x)= x5 − 5x Find the x− and y−intercept, critical numbers, increasing and decreasing intervals, local minimum and maximum, f''(x), intervals of concavity up and down, and inflection points.
1. Find the critical numbers for the following functions (a) f(x) = 2x 3 − 6x...
1. Find the critical numbers for the following functions (a) f(x) = 2x 3 − 6x (b) f(x) = − cos(x) − 1 2 x, [0, 2π] 2. Use the first derivative test to determine any relative extrema for the given function f(x) = 2x 3 − 24x + 7
f(x) =2x^5-5x^4-10x^3+1 is defined as all real numbers a) find the intervals where F is increasing...
f(x) =2x^5-5x^4-10x^3+1 is defined as all real numbers a) find the intervals where F is increasing and decreasing b) find the intervals where F is concave up and concave down c) find the local maximum, minimum and the points of inflection. d) find the absolute maximum and minimum of F over [-2,2]
(a) For f(x) = 1 4 x 4 − 6x 2 find the intervals where f(x)...
(a) For f(x) = 1 4 x 4 − 6x 2 find the intervals where f(x) is concave up, and the intervals where f(x) is concave down, and the inflection points of f(x) by the following steps: i. Compute f 0 (x) and f 00(x). ii. Show that f 00(x) is equal to 0 only at x = −2 and x = 2. iii. Observe that f 00(x) is a continuous since it is a polynomial. Conclude that f 00(x)...
Let f(x) = −x^4 − 4x^3. (i) Find the intervals of increase/decrease of f. (ii) Find...
Let f(x) = −x^4 − 4x^3. (i) Find the intervals of increase/decrease of f. (ii) Find the local extrema of f (values and locations). (iii) Determine the intervals of concavity. (iv) Find the location of the inflection points of f. (v) Sketch the graph of f. (You can choose your own scale for the graph)
1) Find the intervals on which f is increasing and the intervals on which it is...
1) Find the intervals on which f is increasing and the intervals on which it is decreasing. f(x)= -x^3-6x 2) Find the intervals on which f is increasing and the intervals on which it is decreasing. f(x)= x^4/4+x^3+x^2 3) Locate the critical points of the following function. Then use the Second Derivative Test to determine whether they correspond to local​ maxima, local​ minima, or neither.  f(x)= -x^3-3x^2
1. Find the critical numbers of the function f (x) = x^3− 12x in the interval...
1. Find the critical numbers of the function f (x) = x^3− 12x in the interval [0, 3]. Then find the absolute maximum and the absolute minimum of f(x) on the interval [0,3]. 2. Using only the limit definition of derivative, find the derivative of f(x) = x^2− 6x (do not use the formulas of derivatives).
Given f(x) = x^4 - 4x^3 1) find the intervals on which f is increasing or...
Given f(x) = x^4 - 4x^3 1) find the intervals on which f is increasing or decreasing. 2) find the local maximum and minimum values of f. 3) find the intervals of concavity and the inflection points
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT