In: Computer Science
. Consider QuickSort on the array A[1:n] and assume that the pivot element x (used to split the array A[lo:hi] into two portions such that all elements in the left portion A[lo:m] are ≤x and all elements in the right portion A[m:hi] are ≥x) is the second element of the array to be split (i. e., A[lo+1]).
For a specific value of n at least 13 (your choice), construct an assignment of the numbers 1...n to the n array elements that causes QuickSort, with the stated choice of pivot, to
(a) execute optimally (that is A[lo:m] and A[m:hi] are always of equal size)
(b) execute in the slowest possible way.
class QuickSort {
int partition(int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {
if (arr[j] <= pivot) {
i++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
void sort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
sort(arr, low, pi - 1);
sort(arr, pi + 1, high);
}
}
static void printArray(int arr[]) {
int n = arr.length;
for (int i = 0; i < n; ++i) System.out.print(arr[i] + " ");
System.out.println();
}
public static void main(String args[]) {
int arr[] = { 8, 3, 25, 6, 10, 17, 1, 2, 18, 5 };
int n = arr.length;
QuickSort ob = new QuickSort();
ob.sort(arr, 0, n - 1);
System.out.println("sorted array");
printArray(arr);
}
}
******************************************************************************************
PLEASE LIKE IT RAISE YOUR THUMBS UP
IF YOU ARE HAVING ANY DOUBT FEEL FREE TO ASK IN COMMENT
SECTION
******************************************************************************************