In: Math
We toss a fair 6 sided die and flip a fair coin twice. Define the random variable Y1 to be the number of sports atop the die. Define Y2 to be the total number of heads obtained on the two flips of the coin.
a) Find the mean value and standard deviation of Y1.
b) Find the mean value and standard deviation of Y2.
c) Find the mean value and standard deviation of Y1+Y2.
d) What are the mean value and standard deviation of 5+Y1?
e) What are the mean value and standard deviation of 5(Y1)?
a)
here as probabiolity of an outcome on a die p=1/6
hence
Y1 | F(Y1) | Y1P(Y1) | Y12P(Y1) |
1 | 1/6 | 0.167 | 0.167 |
2 | 1/6 | 0.333 | 0.667 |
3 | 1/6 | 0.500 | 1.500 |
4 | 1/6 | 0.667 | 2.667 |
5 | 1/6 | 0.833 | 4.167 |
6 | 1/6 | 1.000 | 6.000 |
total | 3.500 | 15.167 | |
E(Y1) =μ= | ΣY1P(Y1) = | 3.5000 | |
E(Y1^2) = | ΣY12P(Y1) = | 15.1667 | |
Var(Y1)=σ2 = | E(Y12)-(E(Y1))2= | 2.9167 | |
std deviation= | σ= √σ2 = | 1.7078 |
mean of Y1 =E(Y1)=3.5
Std deviaiton of Y1 SD(Y1)=1.7078
b)
for P(Y2=0)=P(0 heads)=(1/2)*(1/2)=1/4
P(Y2=1)=P(1st toss head and secnd tail)+P(1st tail and 2nd head)=(1/2)*(1/2)+(1/2)*(1/2)=1/2
P(Y2=2)=P(both heads)=(1/2)*(1/2)=1/4
Y2 | F(Y2) | Y2P(Y2) | Y22P(Y2) |
0 | 1/4 | 0.000 | 0.000 |
1 | 1/2 | 0.500 | 0.500 |
2 | 1/4 | 0.500 | 1.000 |
total | 1.000 | 1.500 | |
E(Y2) =μ= | ΣY2P(Y2) = | 1.0000 | |
E(Y2^2) = | ΣY22P(Y2) = | 1.5000 | |
Var(Y2)=σ2 = | E(Y22)-(E(Y2))2= | 0.5000 | |
std deviation= | σ= √σ2 = | 0.7071 |
Here mean of Y2 =E(Y2)=1
std deviation of Y2 =0.7071
c)
mean of Y1+Y2 =E(Y1)+E(Y2)=3.5+1 =4.5
std deviaiton of Y1+Y2 =sqrt(Var(Y1)+Var(Y2))=sqrt(2.9167+0.5)=1.8484
d)
mean of 5+Y1 =5+E(Y1)=5+3.5=8.5
std deviaiton of 5+Y1 =SD(Y1)=1.7078
e)
mean of 5Y1 =5*E(Y1)=5*3.5=17.5
std deviation of 5Y1 =5*SD(Y1)=5*1.7078=8.539