Question

In: Physics

The bar shown in the figure below moves on rails to the right with a velocity...

The bar shown in the figure below moves on rails to the right with a velocity , and a uniform, constant magnetic field is directed out of the page. Which of the following statements are correct? (Select all that apply.)
uploaded image
a.The induced current in the loop is zero.
b.The induced current in the loop is clockwise.
c.The induced current in the loop is counterclockwise.
d.An external force is required to keep the bar moving at constant speed.
e.No force is required to keep the bar moving at constant speed.

Solutions

Expert Solution

The correct statements are following

b. the induced current in the loop is clockwise

$$ \text { Since } F=q(V \times B) $$

d. An external force is required to keep the bar moving at constant speed


Related Solutions

The conducting bar illustrated in Figure below moves with a constant velocity on two frictionless, parallel...
The conducting bar illustrated in Figure below moves with a constant velocity on two frictionless, parallel rails in the presence of a uniform magnetic field directed into the page. The bar has mass m = 0.10 kg, and its length is l. If the magnitude of the external force applied to the bar is  Fapp = 9 N what is the magnitude of the constant velocity of the bar (in m/s) ? B = 1 T, l = 12.2 cm, R...
A conducting bar is sliding to the right on two rails which are connect by a...
A conducting bar is sliding to the right on two rails which are connect by a 15 LaTeX: \Omega resistor. The distance between the rails is L = 0.50 m. There is a uniform magnetic field with a magnitude of 0.80 T as shown in the figure. (a) Find the speed at which the bar must be moved to produce a current of 0.2 A in the resistor. Ignore the resistance in the rails and conducting bar. sa007-1.jpg (b) What...
Consider the apparatus shown below in which a conducting bar can be moved along two rails...
Consider the apparatus shown below in which a conducting bar can be moved along two rails connected to a lightbulb. The whole system is immersed in a magnetic field of 0.480 T perpendicularly into the page. The vertical distance between the horizontal rails is 0.800 m. The resistance of the lightbulb is 41.2 Ω, assumed to beconstant. The bar and rails have negligible resistance. The bar is moved toward the right by a constant force of magnitude 0.600 N.(a) What...
In (Figure 1), the rod moves with a speed of 1.6 m/s on rails 29.0 cm...
In (Figure 1), the rod moves with a speed of 1.6 m/s on rails 29.0 cm apart. The rod has a resistance of 2.1 Ω . The magnetic field is 0.31 T , and the resistance of the U-shaped conductor is 26.0 Ω at a given instant. Part A Calculate the induced emf Part B Calculate the current in the U -shaped conductor. Part C Calculate the external force needed to keep the rod's velocity constant at that instant.
The right half of the square loop of wire shown in Figure P24.37
The right half of the square loop of wire shown in Figure P24.37  is in a 0.85 T magnetic field directed into the page. The current in the loop is  1.3 A in a clockwise direction. What is the magnitude of the force on the loop, and in which direction does it act?
The right half of the square loop of wire shown in (Figure 1) is in a...
The right half of the square loop of wire shown in (Figure 1) is in a 0.25 T magnetic field directed into the page. The current in the loop is 1.5 A in a clockwise direction. Part A What is the magnitude of the force on the loop? Express your answer with the appropriate units. Part B In which direction does this force act? to the left downward to the right upward
For the system of capacitors shown in the the figure below(Figure 1) , a potential difference...
For the system of capacitors shown in the figure below(Figure 1), a potential difference of 25.0V is maintained across ab.Part (a): What is the equivalent capacitance of this system between a and b in nF?Part (b): How much charge is stored by this system in nC?Part (c): How much charge does the 6.50 nF capacitor store in nC?Part (d): What is the potential difference across the 7.50 nF capacitor in V?
Ball 1 with mass 1 kg moves at constant velocity to the right at 3.0 m/s,...
Ball 1 with mass 1 kg moves at constant velocity to the right at 3.0 m/s, towards Ball 2 with mass 2 kg moving to the right at 1.5 m/s. 1 and 2 collide elastically. What is the final velocity of 1 and 2?
Consider the system of capacitors shown in the figure below
Consider the system of capacitors shown in the figure below (C1 = 4.00 μF,C2 = 2.00 μF). (a) Find the equivalent capacitance of the system.  (b) Find the charge on each capacitor.  (c) Find the potential difference across each capacitor (d) Find the total energy stored by the group.
​Two concentric spheres are shown in the figure below.
Two concentric spheres are shown in the figure below. The inner sphere is a solid conductor and carries a charge of +5.00 μC uniformly distributed over its outer surface. The outer sphere is a conducting shell that carries a net charge of -8.00 μC. No other charges are present. The radii shown in the figure have the values R1 = 10.0cm, R2 = 20.0cm, and R3 = 30.0 cm. (a) (10 points) Find the total excess charge on the inner and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT