Question

In: Math

Find the volume of the figure whose base is the region bounded by y = x^2...

Find the volume of the figure whose base is the region bounded by y = x^2 + 4, y = x^2, the y-axis, and the vertical line x =2, and whose cross sections are squares parallel to the x-axis.

Solutions

Expert Solution


Related Solutions

find the volume of the region bounded by y=sin(x) and y=x^2 revolved around y=1
find the volume of the region bounded by y=sin(x) and y=x^2 revolved around y=1
1. Find the volume of the region bounded by y = ln(x), y = 1, y...
1. Find the volume of the region bounded by y = ln(x), y = 1, y = 2, x = 0 and rotated about the y-axis. Which method will be easier for this problem? 2. Find the volume of the region bounded by y = 2x + 2, x = y2-2y and rotated about y = 2. Which method will be easier for this problem? NOTE: You do not need to integrate this problem, just set it up.
Find the volume of the solid obtained by rotating the region bounded by y = x...
Find the volume of the solid obtained by rotating the region bounded by y = x 3 , y = 1, x = 2 about the line y = −3. Sketch the region, the solid, and a typical disk or washer (cross section in xy-plane). Show all the work and explain thoroughly.
Find the volume of the solid that results when the region bounded by y=√x , y=0,...
Find the volume of the solid that results when the region bounded by y=√x , y=0, and x=16 is revolved about the line x=16.
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x)...
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x) and the lines and y=2 and x=0 about: 1) the x-axis. 2) the y-axis. 3) the line y=2. 4) the line x=4.
A volume is described as follows: 1. the base is the region bounded by x =...
A volume is described as follows: 1. the base is the region bounded by x = − y 2 + 16 y + 5 and x = y 2 − 30 y + 245 ; 2. every cross section perpendicular to the y-axis is a semi-circle. Find the volume of this object.
Find the centroid of the region bounded by the given curves. y=x^2 , x=y^2
Find the centroid of the region bounded by the given curves. y=x^2 , x=y^2
1. The base of a solid is the region in the x-y plane bounded by the...
1. The base of a solid is the region in the x-y plane bounded by the curve y= sq rt cos(x) and the x-axis on [-pi/2, pi/2] . The cross-sections of the solid perpendicular to the x-axis are isosceles right triangles with horizontal leg in the x-y plane and vertical leg above the x-axis. What is the volume of the solid? 2. Let E be the solid generated by revolving the region between y=x^3 and y= sr rt (x) about...
Find the area of the region bounded by the parabolas x = y^2 - 4 and...
Find the area of the region bounded by the parabolas x = y^2 - 4 and x = 2 - y^2 the answer is 8 sqrt(3)
Find the volume for the solid, whose base is between the curves y=2x and y=x^2 over...
Find the volume for the solid, whose base is between the curves y=2x and y=x^2 over [0,2] and whose cross sectional slices are squares perpendicular to the x-axis and perpendicular to the base. Include a sketch of your base and show the slice orientation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT