Question

In: Advanced Math

A volume is described as follows: 1. the base is the region bounded by x =...

A volume is described as follows:

1. the base is the region bounded by x = − y 2 + 16 y + 5 and x = y 2 − 30 y + 245 ;

2. every cross section perpendicular to the y-axis is a semi-circle. Find the volume of this object.

Solutions

Expert Solution


Related Solutions

Find the volume of the figure whose base is the region bounded by y = x^2...
Find the volume of the figure whose base is the region bounded by y = x^2 + 4, y = x^2, the y-axis, and the vertical line x =2, and whose cross sections are squares parallel to the x-axis.
1. The base of a solid is the region in the x-y plane bounded by the...
1. The base of a solid is the region in the x-y plane bounded by the curve y= sq rt cos(x) and the x-axis on [-pi/2, pi/2] . The cross-sections of the solid perpendicular to the x-axis are isosceles right triangles with horizontal leg in the x-y plane and vertical leg above the x-axis. What is the volume of the solid? 2. Let E be the solid generated by revolving the region between y=x^3 and y= sr rt (x) about...
Which of the following is the volume of the region bounded by x * 2 +...
Which of the following is the volume of the region bounded by x * 2 + y * 2 = 4 cylinders, z = 0 and z = 4 - x planes?
1. Find the volume of the region bounded by y = ln(x), y = 1, y...
1. Find the volume of the region bounded by y = ln(x), y = 1, y = 2, x = 0 and rotated about the y-axis. Which method will be easier for this problem? 2. Find the volume of the region bounded by y = 2x + 2, x = y2-2y and rotated about y = 2. Which method will be easier for this problem? NOTE: You do not need to integrate this problem, just set it up.
Find the volume of the solid obtained by rotating the region bounded by x = 4-...
Find the volume of the solid obtained by rotating the region bounded by x = 4- (y-1) ^ 2; x + y = 4 on the X axis, you must graph the region
Find the volume of the solid obtained by rotating the region bounded by y = x...
Find the volume of the solid obtained by rotating the region bounded by y = x 3 , y = 1, x = 2 about the line y = −3. Sketch the region, the solid, and a typical disk or washer (cross section in xy-plane). Show all the work and explain thoroughly.
find the volume of the region bounded by y=sin(x) and y=x^2 revolved around y=1
find the volume of the region bounded by y=sin(x) and y=x^2 revolved around y=1
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x)...
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x) and the lines and y=2 and x=0 about: 1) the x-axis. 2) the y-axis. 3) the line y=2. 4) the line x=4.
Find the volume of the solid that results when the region bounded by y=√x , y=0,...
Find the volume of the solid that results when the region bounded by y=√x , y=0, and x=16 is revolved about the line x=16.
(1 point) Find the volume of the solid obtained by rotating the region bounded by the...
(1 point) Find the volume of the solid obtained by rotating the region bounded by the given curves below about the line x=5. y=x^2,y=5x Volume =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT