Question

In: Math

1. Two cars are moving on a road and both start at the same place at...

1. Two cars are moving on a road and both start at the same place at time ?=0. The velocity of car number 1 is given by ?1(?)=sin?+1 and the velocity of car number 2 is given by ?2(?)=cos?+1.

a. Which car is ahead at ?=?2 ,?=?,?=3?? [3 marks] b. Write down a definite integral which gives the total distance traveled by car number 1 from ?=0 to ?=10. [3 marks]

b. Write down a definite integral which gives the total distance traveled by car number 1 from ?=0 to ?=10. [3 marks]

c. Are the cars ever at the same place on the road at the same time? If so, at what times? [3 marks]

d. What is the maximum distance between the cars? [3 marks]

Solutions

Expert Solution


Related Solutions

Two bicyclists start racing along a straight road from the same place at the same time...
Two bicyclists start racing along a straight road from the same place at the same time in the same direction. If one travels 40 mi/hr and the other 35 mi/hr, find the distance between them t hours after they start.
Two cars start moving from the same point. One travels south at 56 mi/h and the...
Two cars start moving from the same point. One travels south at 56 mi/h and the other travels west at 42 mi/h. At what rate is the distance between the cars increasing three hours later?b\
Two cars are moving at 60 mph in the same direction and in the same lane....
Two cars are moving at 60 mph in the same direction and in the same lane. The cars are separated by one car length (20 ft) for each 10 mph. The coefficient of friction (skidding) between the tires and the roadway is 0.6. The reaction time is assumed to be 0.5 sec. a) If the lead car hits a parked truck, what is the speed of the second car when it hits the first (stationary) car? b) If the lead...
Two identical spaceships, both measuring 100 m at rest are moving in the same direction. In...
Two identical spaceships, both measuring 100 m at rest are moving in the same direction. In a particular reference frame one spaceship measures 80 m, and the other 60 m. What would be the lengths of the spaceships with respect to each other?
Two ice skaters are gliding together along the ice, both moving at the same, constant velocity....
Two ice skaters are gliding together along the ice, both moving at the same, constant velocity. They are sliding without exerting a force meaning you can neglect any friction. The first skater (the one in the back) as a mass M 1. The second skater (the one in front) has a mass M 2. As they are sliding with an initial speed v i, the first skater pushes the second skater directly forward in the direction they are moving. After...
Two cars start from rest at a red stop light. When the light turns green, both...
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates uniformly at a rate of 4.7 m/s2 for 3.8 seconds. It then continues at a constant speed for 8.5 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 206.78 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the...
Two cars start from rest at a red stop light. When the light turns green, both...
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates uniformly at a rate of 3.4 m/s2 for 4.1 seconds. It then continues at a constant speed for 14.7 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 258.93 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the...
Two cars start from rest at a red stop light. When the light turns green, both...
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates uniformly at a rate of 4.7 m/s2 for 3.8 seconds. It then continues at a constant speed for 8.4 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 205 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the...
Two cars start from rest at a red stop light. When the light turns green, both...
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates uniformly at a rate of 3.4 m/s2 for 4.1 seconds. It then continues at a constant speed for 14.7 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 258.93 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the...
Two cars start from rest at a red stop light. When the light turns green, both...
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates uniformly at a rate of 4.7 m/s2 for 3.8 seconds. It then continues at a constant speed for 8.7 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 212 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT