Question

In: Physics

A research Van de Graaff generator has a 1.98-m-diameter metal sphere with a charge of 4.75...

A research Van de Graaff generator has a 1.98-m-diameter metal sphere with a charge of 4.75 mC

on it.

a) What is the potential near its surface?

MV

b) At what distance from its center is the potential 1.02

MV

?

m

c) An oxygen atom with 3

missing electrons is released near the Van de Graaff generator. What is its energy in MeV

at this distance?

MeV

Solutions

Expert Solution


Related Solutions

find the charge on the other metal ball when it is connected with the Van de...
find the charge on the other metal ball when it is connected with the Van de Graaff generator. the generator initially has a charge of +3.5 μC on its surface. It has a radius of 15 cm. It is connected by a long, thin, conducting wire to a neutral metal ball with a radius of 1.0 cm which is a long way away from the Van de Graaff generator. (a) Find the charge on the small metal ball after this...
Foil Plates Place foil plates on the Van de Graaf generator face down. When the generator...
Foil Plates Place foil plates on the Van de Graaf generator face down. When the generator is on, what happens to the plates? Repeat the experiment with the plates facing up. Do plates behave any different? If so, why? If not, why not? Explain your reasoning. Please draw picture
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B of radius 20.0 cm carries −2.00 μC of charge. If the two spheres are attached by a very long conducting thread, what is the final distribution of charge on the two spheres? Charge on sphere A (μC)? Charge on sphere B (μC)?
A sphere with radius a has uniform charge/volume. A metal sphere shell has inner radius b(from...
A sphere with radius a has uniform charge/volume. A metal sphere shell has inner radius b(from center) and outer radius c(from center). Between a and b is empty. Outer metal shell has total charge Q1 Please start with Gauss's law and show steps Find Electric field in region a) r<a b)a<r<b c)b<r<c d) r>c
A solid metal sphere of radius a = 2.5 cm has a net charge Qin =...
A solid metal sphere of radius a = 2.5 cm has a net charge Qin = - 3 nC (1 nC = 10-9C). The sphere is surrounded by a concentric conducting spherical shell of inner radius b = 6 cm and outer radius c = 9 cm. The shell has a net charge Qout = + 2 nC. What is V0, the electric potential at the center of the metal sphere, given the potential at infinity is zero?
A small metal sphere has a mass of 0.15 g and a charge of -21.0 nC....
A small metal sphere has a mass of 0.15 g and a charge of -21.0 nC. It is 10.0 cm directly above an identical sphere that has the same charge. This lower sphere is fixed and cannot move. If the upper sphere is released, it will begin to fall. What is the magnitude of its initial acceleration?
A metal sphere has an electrical charge of -2*10 ^- 6 C. Calculate the magnitude and...
A metal sphere has an electrical charge of -2*10 ^- 6 C. Calculate the magnitude and direction of the E field at a point 10cm to the right of the sphere.
A metal sphere of radius a has a uniform (free) charge density σf on its surface....
A metal sphere of radius a has a uniform (free) charge density σf on its surface. The permittivity of the dielectric region surrounding the sphere varies as , where r is the radial coordinate. (1 pts) Determine the polarization P and electric field intensity E inside the sphere. (3 pts) Determine the polarization P and electric field intensity E in the dielectric. (5 pts) Calculate all bound charge densities, ρb and σb. Is the dielectric homogeneous? (1 pts) Test whether...
A small metal sphere, A, carrying a charge of +15.0μC is at the origin. An identical...
A small metal sphere, A, carrying a charge of +15.0μC is at the origin. An identical sphere, B, carrying a charge of -18.0μC is at~ xB= 4.0ˆi cm and a third sphere, C,carrying +25.0μC is at~x C= 3.0ˆj cm. (a) Find the total electrical force exerted on sphere A. (b) Let us view sphere A as a probe charge which we are using to measure the field due to spheres B and C. Use your result from part b) to...
A small metal sphere, A, carrying a charge of +15.0 µC is at the origin. An...
A small metal sphere, A, carrying a charge of +15.0 µC is at the origin. An identical sphere, B, carrying a charge of -18.0 µC is at ~xB = 4.0ˆi cm and a third sphere, C, carrying +25.0 µC is at ~xC = 3.0ˆj cm. (a) Find the total electrical force exerted on sphere A. (b) Let us view sphere A as a probe charge which we are using to measure the field due to spheres B and C. Use...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT