Question

In: Chemistry

adding 50.0 mL of 1.0 x 10^-3 M Sr(NO3)2 and 50.0 mL of 1.0 x 10^-3...

adding 50.0 mL of 1.0 x 10^-3 M Sr(NO3)2 and 50.0 mL of 1.0 x 10^-3 M Na2CO3wpuld produce how many grams of SrCO3 precipitate? ksp of SrCO3 = 1.1 x 10^-10

Solutions

Expert Solution

From 50.0 mL of 10-3 M Sr(NO3)2 we will have 50*10-3 millimoles of Sr+2.

From 50.0 mL of 10-3 M Na2CO3 we will have 50*10-3 millimoles of CO32-.

Total volume after mixing = 100ml

The concentration of Sr+2 = CO32- = 50*10-3/100 = 0.0005M

[Sr+2][CO32-] = 0.0005*0.0005 = 25*10-8 = 2.5*10-7 which is greater than the Ksp value of 1.1*10-10 so precipation will occur and all the excess Sr+2 and CO32- will form precipitate such that remaining concentration of Sr+2 and CO32- is such that [Sr+2] = [CO32-] and [Sr+2][CO32-] = Ksp.

so, lets say after precipitation the new concentration of [Sr+2] = [CO32-] = s

so, s2 = Ksp = 1.1*10-10 so, s = 1.048*10-5M so, number of moles = s*volume in L = 1.048*10-6

So, the number of moles in precipitate = number of moles present before precipitation - number of moles in solution after precipatation = 50*10-6 - 1.048*10-6 = 48.95*10-6 moles

Weight of 48.95*10-6 moles of SrCO3 = 48.95*10-6*147.63 = 7.22*10-3 g


Related Solutions

A solution is prepared by mixing 50.0 mL of 0.50 M Cu(NO3)2 with 50.0 mL of...
A solution is prepared by mixing 50.0 mL of 0.50 M Cu(NO3)2 with 50.0 mL of 0.50 M Co(NO3)2. Sodium hydroxide is then added to the mixture. Assume no change in volume. Ksp = 2.2 × 10-20 for Cu(OH)2, Ksp = 1.3 × 10-15 for Co(OH)2 The hydroxide concentration at which the first metal hydroxide will just begin to precipitate is __________M Using the integer designators, the metal hydroxide that precipitates first is {(1) Cu(OH)2 or (2) Co(OH)2 } _____________M...
When 50.0 mL of 0.400 M Ca(NO3)2 is added to 50.0 mL of 0.800 M NaF,...
When 50.0 mL of 0.400 M Ca(NO3)2 is added to 50.0 mL of 0.800 M NaF, CaF2 precipitates, as shown in the net ionic equation below. The initial temperature of both solutions is 25.00°C. Assuming that the reaction goes to completion, and that the resulting solution has a mass of 100.00 g and a heat capacity the same as water, calculate the final temperature of the solution. Ca2+(aq) + 2 F-(aq) → CaF2(s) ΔH° = –11.5 kJ When trying to...
When 50.0 mL of 0.900 M Ca(NO3)2 is added to 50.0 mL of 1.80 M NaF,...
When 50.0 mL of 0.900 M Ca(NO3)2 is added to 50.0 mL of 1.80 M NaF, CaF2 precipitates, as shown in the net ionic equation below. The initial temperature of both solutions is 30.00°C. As the reaction proceeds, the temperature rises to 31.50 °C. Assuming that the reaction goes to completion, and that the resulting solution has a mass of 100.0 g and a specific heat of 4.18 J/(g ∙ °C), calculate the ΔH° for this reaction, expressed in kJ/mol...
When 50.0 mL of 0.400 M Ca(NO3)2 is added to 50.0 mL of 0.800 M NaF,...
When 50.0 mL of 0.400 M Ca(NO3)2 is added to 50.0 mL of 0.800 M NaF, CaF2 precipitates, as shown in the net ionic equation below. The initial temperature of both solutions is 30.00°C. Assuming that the reaction goes to completion, and that the resulting solution has a mass of 100.00 g and a specific heat of 4.18 J/(g ∙ °C), calculate the final temperature of the solution.             Ca2+(aq) + 2 F-(aq) → CaF2(s)   ΔH° = -11.5 kJ 30.55°C...
A 66.0 mL sample of 1.0 M NaOH is mixed with 50.0 mL of 1.0 M...
A 66.0 mL sample of 1.0 M NaOH is mixed with 50.0 mL of 1.0 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 23.7 °C. After adding the NaOH solution to the coffee cup, the mixed solutions are stirred until reaction is complete. Assume that the density of the mixed solutions is 1.0 g/mL, that the specific heat of...
A sample is prepared by adding 750 mL of 4.00 × 10–3 M Ce(NO3)3 solution to...
A sample is prepared by adding 750 mL of 4.00 × 10–3 M Ce(NO3)3 solution to 300 mL of 2.00 × 10–2 mol L–1 KIO3 solution. Will any Ce(IO3)3 (Ksp = 1.9 × 10–19) precipitate be observed for the final solution? Show all working.
A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3, 4.00 mL of 2.00 x...
A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3, 4.00 mL of 2.00 x 10-3 M KSCN, and 1.00 mL of distilled water and finds that in the equilibrium mixture, the concentration of FeSCN2+ is 1.31 x 10-4 M. The equation describing the equilibrium is Fe3+ (aq) + SCN- (aq) →← →← FeSCN2+ (aq) Calculate the concentration of FeSCN2+ at equilibrium. Include appropriate significant figures and units in your response. Example input: 1.31x10^-4 M.
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x...
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x 10‐3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN+2 is 1.40 x 10‐4 M. What is the initial concentration in solution of the Fe+3 and SCN‐? What is the equilibrium constant for the reaction? What happened to the K+ and the NO3‐ ions in this solution?
A solution is made by mixing 13.0 g of Sr(OH)2 and 50.0 mL of 0.150 M...
A solution is made by mixing 13.0 g of Sr(OH)2 and 50.0 mL of 0.150 M HNO3. A.Write a balanced equation for the reaction that occurs between the solutes. B.Calculate the concentration of OH− ion remaining in solution. C.Calculate the concentration of Sr2+ ion remaining in solution. D.Calculate the concentration of NO−3 ion remaining in solution. E.Is the resultant solution acidic or basic?
A buffer is prepared by adding 150 mL of 1.0 M NaOH to 250 mL of...
A buffer is prepared by adding 150 mL of 1.0 M NaOH to 250 mL of 1.0 M NaH2PO4. How many moles of HCl must be added to this buffer solution to change the pH by 0.25 units? Assume the total volume remains unchanged at 400 mL. For H2PO4-, Ka = 6.3 × 10-8.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT