Question

In: Other

A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a useful torque of...

A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a useful torque of 160 Nm when the rotor emf makes 120 complete cycles per minute. The windage and friction loss is 1005.30 Watt. It is assumed; the core loss is lumped together with the windage and friction loss. The total stator loss is given to be 800 Watt. Compute: 


a) Shaft power output, 

b) The copper loss in the rotor winding,

c) The input power to the motor, and 

d) The efficiency.

Solutions

Expert Solution


Related Solutions

A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1 W , X1 = 0.4 W, R2’ = 0.12 W , X2’ = 0.4 W, Xm = 20 W , Pr = 1 kW. The motor is operated at 970 rpm what is the efficiency?
A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The...
A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The motor has the following parameters ?1=0.294 Ω ?1=1.39 ?? ??=41 ?? ?2′=0.156 Ω ?2′=0.74 ?? 1) Starting. Calculate the following: i) Motor starting current. ii) Motor starting torque. 2) Maximum operating point. Calculate the following: i) Slip at which maximum torque is developed. ii) Maximum torque developed. 3) Steady-state operation. Calculate the following: i) Motor slip. ii) Motor speed. iii) Motor current. iv) Motor...
The parameters of a 3-phase, 4-pole, 50 Hz, Y-connected, wound-rotor induction motor are listed below. These...
The parameters of a 3-phase, 4-pole, 50 Hz, Y-connected, wound-rotor induction motor are listed below. These are the default values of the “Asynchronous Machine” model in MATLAB Simulink. r1=0.5968 ?; r2=0.6258 ?; L1=0.0003495 H; L2=0.005473 H; Lm=0.0354 H; Stator line voltage = 400 V rms. The motor for rotor speeds nm= 0 to 1500 rpm. X1= 0.1097 ohm, X2= 1.719 ohm , Xm= 11.12 ohm, RTH = 0.5853 , XTH = 0.1395 and VTH = 230.82 V. Suppose the motor...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF lagging. The stator copper losses are 2 kW, the stator core losses are 1.8 kW and rotor copper losses are 700 W. The friction and windage losses are 600 W, the stray loss 100 W, and rotor core loss 100 W. Find the following quantities: a. The air gap power. b. The developed mechanical power. c. The output power. d. The efficiency of the...
The full load speed of a three-phase four-pole 50Hz, 160kW induction motor is 1,475rpm. The starting...
The full load speed of a three-phase four-pole 50Hz, 160kW induction motor is 1,475rpm. The starting torque is 170%, the yield torque is 280% of the rated torque, and the moment of inertia of the rotor is 2.5kg-m ^ 2. The torque of the load converted to the motor shaft is 800 N-m at full load speed and the moment of inertia is 20 kg-m ^ 2. a) Find the starting time when the load torque is assumed to be...
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding...
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding mesh connected and its rotor winding star connected. The standstill voltage measured between slip rings with the rotor open –circuited is 218 V. the stator resistance per phase is 0.6Ω and the stator reactance per phase is 3Ω. The rotor resistance per phase is 0.05Ω and the rotor reactance per phase is 0.25Ω. Calculate the maximum torque and the slip at which it occurs....
A 6-pole and three-phase induction motor has synchronous speed of (1000) RPM. a) Find the no-load...
A 6-pole and three-phase induction motor has synchronous speed of (1000) RPM. a) Find the no-load and full-load operating speed of motor for the cases given, 1. 2.5Hz electrical frequency of rotor for no-load condition. 2. 6.3Hz electrical frequency of rotor for full-load condition. b) Find the speed regulation of motor by using parameters found above. c) Determine the electrical frequency of rotor under full-load condition so that speed regulation would be equal to 5%? (Electrical frequency of rotor for...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following equivalent circuit parameters. Rs = 0.42 Ω, Rr = 0.23 Ω, Xs = Xr = 0.82 Ω. Xm = 22 Ω. The no load loss = 60 W and may be assumed constant. The rotor speed is 1750 rpm. Use the approximate equivalent circuit ( i.e. the Xm branch is at the very left of the circuit) determine the following a. the synchronous speed...
A 50-Hz, 440-V, 6 pole wye connected induction motor is rated at 75 kW. The equivalent...
A 50-Hz, 440-V, 6 pole wye connected induction motor is rated at 75 kW. The equivalent parameters are as follows: RS = 0.082 Ω; RR’ = 0.07 Ω; XS = 0.19 Ω; XR’ = 0.18 Ω; XM = 7.2 Ω The losses associated with the machine are field and winding, miscellaneous and core loss with values of 1.3 kW, 150 W and 1.4 kW, respectively. For a slip of 4 %, determine: a) The line current b) The stator power...
Tests were carried out on a three-phase 220 V, 50 Hz, 4-pole delta-connected induction motor. The...
Tests were carried out on a three-phase 220 V, 50 Hz, 4-pole delta-connected induction motor. The following results were obtained from open circuit (no-load) and short circuit tests.             Open Circuit (no-load) Test Applied Stator Voltage VLine (V) Stator Line Current ILine (A) Total Input Power Pin (W) 240 9.6 536 220 7.2 420 200 5.4 352 180 4.3 304 160 3.5 276 140 3.0 248 120 2.5 224             Short Circuit (locked rotor) Test Applied Stator Voltage VLine (V) Stator Line...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT