Question

In: Math

A cup of coffee is made with boiling water at 100 and stands in a room...

A cup of coffee is made with boiling water at 100 and stands in a room where the temperature is 25. The change in temperature, H in degrees , with respect to time t, in minutes, is given by the following differential equation. (dH)/(dt)=-k(H-25) Solve this differential equation. If the coffee cools to 90 in 3 minutes, how long will it take to cool to 60 degrees? Round your answer to the nearest integer.

Solutions

Expert Solution

Solution:


Related Solutions

A gallon of water is heated-up from room temperature (20oC) to its boiling temperature of 100...
A gallon of water is heated-up from room temperature (20oC) to its boiling temperature of 100 oC at atmospheric pressure. The water is further heated and completely transforms into vapor at which point the heating is stopped. What is the temperature of the steam? A)T=100oC B) T > 100 oC C) T < 100 oC
100 grams of boiling water (temperature 100
100 grams of boiling water (temperature 100
Water is boiled in a cup and its placed in a room that is 25 degrees...
Water is boiled in a cup and its placed in a room that is 25 degrees Celsius. Assume that Newton's Law of Cooling is satisfied: the rate of change in water temperature is proportional to the difference between the temperature of the water and the temperature of the environment. We take the water temperature after 7 minutes and find it to be 77 degrees Celsius. Establish and solve an initial value problem to express the temperature of the water as...
Water is boiled in a cup and put to cool down inside a room. The air...
Water is boiled in a cup and put to cool down inside a room. The air temperature in the room is increasing linearly according to the function Ta(t) = 22 + 0.015t (t in minutes, T in Celsius). Assume Newton’s Law of Cooling is satisfied: the rate of change of water temperature is proportional to the difference between the temperature of the water and the temperature of the environment. The temperature of the water was checked after 8 minutes and...
A- a small volume of cold water is used to cool off a cup of coffee...
A- a small volume of cold water is used to cool off a cup of coffee that is initially too hot to drink. How many mL of water at 4.0oC must be mixed with 485 mL of hot coffee (95.0oC) so that the resulting combination has a temperature of 70.0oC? Assume that the coffee and water have the same density and specific heat.    B- A 5.00 cm3 sample of aluminum at room temperature (25.00oC) was dropped into a 1 L...
A cup of boiling water is placed outside at 1:00pm. One minute later the temperature of...
A cup of boiling water is placed outside at 1:00pm. One minute later the temperature of the water is 152 F. After another minute its temperature is 112 F. What is the outside temperature Differential Equations(Cooling & Mixing)
Newton's Law of Cooling: Boil water in a cup and cool in a room at 32∘C....
Newton's Law of Cooling: Boil water in a cup and cool in a room at 32∘C. Assume that Newton's Law of Cooling is satisfied: the rate of change of water temperature is proportional to the difference between the temperature of the water and the temperature of the environment. We take the water temperature after 5 minutes and find it to be 83∘C. Establish and solve an Initial Value Problem to express the water temperature as a function of time, graph...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 7.10 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 8.50 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used....
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units. Hints
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT