Question

In: Physics

A m = 4.10 kg block is attached to a vertical rod by means of two...

A m = 4.10 kg block is attached to a vertical rod by means of two strings. When the system rotates about the axis of the rod, the strings are extended as shown in the figure, where L is 1.30 m and h is 1.60 m, and the tension in the upper string is 98 N. How many revolutions per minute does the system make?

Solutions

Expert Solution


Related Solutions

A block with mass m = 6.2 kg is attached to two springs with spring constants...
A block with mass m = 6.2 kg is attached to two springs with spring constants kleft = 31 N/m and kright = 49 N/m. The block is pulled a distance x = 0.2 m to the left of its equilibrium position and released from rest. 1) What is the magnitude of the net force on the block (the moment it is released)? N 2) What is the effective spring constant of the two springs? N/m 3) What is the...
A block with mass m = 4.2 kg is attached to two springs with spring constants...
A block with mass m = 4.2 kg is attached to two springs with spring constants kleft = 34 N/m and kright = 57 N/m. The block is pulled a distance x = 0.22 m to the left of its equilibrium position and released from rest Where is the block located, relative to equilibrium, at a time 0.8 s after it is released? (if the block is left of equilibrium give the answer as a negative value; if the block...
A block with mass m = 6.1 kg is attached to two springs with spring constants...
A block with mass m = 6.1 kg is attached to two springs with spring constants kleft = 29 N/m and kright = 48 N/m. The block is pulled a distance x = 0.28 m to the left of its equilibrium position and released from rest. 4) How long does it take the block to return to equilibrium for the first time? 5) What is the speed of the block as it passes through the equilibrium position? 6) What is...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A 2.4 kg block hangs from the bottom of a 2.0 kg, 1.6 m long rod....
A 2.4 kg block hangs from the bottom of a 2.0 kg, 1.6 m long rod. The block and the rod form a pendulum that swings out on a frictionless pivot at the top end of the rod. A 10 g bullet is fired horizontally into the block, where it sticks, causing the pendulum to swing out to an angle of 45 degrees. You can treat the wood black as a point mass. What is the moment of inertia of...
Two balls of mass 3.29 kg are attached to the ends of a thin rod of...
Two balls of mass 3.29 kg are attached to the ends of a thin rod of negligible mass and length 72 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 127 g drops onto one of the balls, with a speed 2.5 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? 1.31×10-1 rad/s ¡Correcto! Su recibo es 160-8476...
Two 1.9 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 1.9 kg balls are attached to the ends of a thin rod of negligible mass, 62 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.42 kg wad of wet putty drops onto one of the balls with a speed of 3.2 m/sec and sticks to it. 1) What is the ratio of the magnitude of angular momentum of the...
A 1.40 kg block is attached to a spring with spring constant 16.5 N/m . While...
A 1.40 kg block is attached to a spring with spring constant 16.5 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 43.0 cm/s . What are The block's speed at the point where x= 0.350 A?
A 1.25 kg block is attached to a spring with spring constant 18 N/m . While...
A 1.25 kg block is attached to a spring with spring constant 18 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 42 cm/s What is the amplitude of the subsequent oscillations? What is the block's speed at the point where x=0.25A?
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. After t = 0.32 s what is the speed of the block? At t = 0.32 s what is the magnitude of the net force on the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT