Stock A |
|
|
|
|
|
Scenario |
Probability |
Return% |
=rate of return% * probability |
Actual return -expected return(A)% |
(A)^2* probability |
Boom |
0.15 |
35 |
5.25 |
24.6 |
0.0090774 |
Good |
0.5 |
12 |
6 |
1.6 |
0.000128 |
Poor |
0.25 |
1 |
0.25 |
-9.4 |
0.002209 |
Bust |
0.1 |
-11 |
-1.1 |
-21.4 |
0.0045796 |
|
Expected return %= |
sum of weighted return = |
10.4 |
Sum=Variance Stock A= |
0.01599 |
|
|
|
Standard deviation of Stock A% |
=(Variance)^(1/2) |
12.65 |
|
|
|
|
|
|
Stock B |
|
|
|
|
|
Scenario |
Probability |
Return% |
=rate of return% * probability |
Actual return -expected return(A)% |
(B)^2* probability |
Boom |
0.15 |
45 |
6.75 |
33 |
0.016335 |
Good |
0.5 |
10 |
5 |
-2 |
0.0002 |
Poor |
0.25 |
2 |
0.5 |
-10 |
0.0025 |
Bust |
0.1 |
-2.5 |
-0.25 |
-14.5 |
0.0021025 |
|
Expected return %= |
sum of weighted return = |
12 |
Sum=Variance Stock B= |
0.02114 |
|
|
|
Standard deviation of Stock B% |
=(Variance)^(1/2) |
14.54 |
|
|
|
|
|
|
|
|
|
|
|
|
Asset C |
|
|
|
|
|
Scenario |
Probability |
Return% |
=rate of return% * probability |
Actual return -expected return(A)% |
(C)^2* probability |
Boom |
0.15 |
33 |
4.95 |
21.7 |
0.00706335 |
Good |
0.5 |
17 |
8.5 |
5.7 |
0.0016245 |
Poor |
0.25 |
-5 |
-1.25 |
-16.3 |
0.00664225 |
Bust |
0.1 |
-9 |
-0.9 |
-20.3 |
0.0041209 |
|
Expected return %= |
sum of weighted return = |
11.3 |
Sum=Variance Asset C= |
0.01945 |
|
|
|
Standard deviation of Asset C% |
=(Variance)^(1/2) |
13.95 |
|
|
|
|
|
|
|
|
|
|
|
|
Covariance
Stock A Stock B: |
|
|
|
|
Scenario |
Probability |
Actual return% -expected return% for A(A) |
Actual return% -expected return% For B(B) |
(A)*(B)*probability |
|
Boom |
0.15 |
24.6000 |
33 |
0.012177 |
|
Good |
0.5 |
1.6 |
-2 |
-0.00016 |
|
Poor |
0.25 |
-9.40 |
-10 |
0.00235 |
|
Bust |
0.1 |
-2140.00% |
-14.5 |
0.003103 |
|
|
|
|
Covariance=sum= |
0.01747 |
|
|
|
Correlation A&B= |
Covariance/(std devA*std devB)= |
0.950139884 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Covariance
Stock A Asset C: |
|
|
|
|
Scenario |
Probability |
Actual return% -expected return% for A(A) |
Actual return% -expected return% for C(C) |
(A)*(C)*probability |
|
Boom |
0.15 |
24.6 |
21.7 |
0.0080073 |
|
Good |
0.5 |
1.6 |
5.7 |
0.000456 |
|
Poor |
0.25 |
-940.00% |
-16.3 |
0.0038305 |
|
Bust |
0.1 |
-21.4 |
-20.3 |
0.0043442 |
|
|
|
|
Covariance=sum= |
0.016638 |
|
|
|
Correlation A&C= |
Covariance/(std devA*std devC)= |
0.94330385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Covariance
Stock B Asset C: |
|
|
|
|
Scenario |
Probability |
Actual return% -expected return% For B(B) |
Actual return% -expected return% for C(C) |
(B)*(C)*probability |
|
Boom |
0.15 |
33 |
21.7 |
0.0107415 |
|
Good |
0.5 |
-2 |
5.7 |
-0.00057 |
|
Poor |
0.25 |
-10 |
-16.3 |
0.004075 |
|
Bust |
0.1 |
-14.5 |
-20.3 |
0.0029435 |
|
|
|
|
Covariance=sum= |
0.01719 |
|
|
|
Correlation B&C= |
Covariance/(std devB*std devC)= |
0.847770108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1)Expected return%= |
Wt Stock
A*Return Stock A+Wt Stock B*Return Stock B+Wt Asset C*Return Asset
C |
|
Expected return%= |
0.3*10.4+0.4*12+0.3*11.3 |
|
|
|
Expected return%= |
11.31 |
|
|
|
|
2
a)Variance |
=w2A*σ2(RA)
+ w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) +
2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC,
RB)*σ(RC)*σ(RB) |
|
Variance |
=0.3^2*0.12647^2+0.4^2*0.14539^2+0.3^2*0.13947^2+2*(0.3*0.4*0.12647*0.14539*0.95014+0.4*0.3*0.14539*0.13947*0.84777+0.3*0.3*0.9433*0.12647*0.13947) |
|
Variance |
0.01789 |
|
|
|
|
2
b) Standard deviation= |
(variance)^0.5 |
|
|
|
|
Standard deviation= |
13.37% |
|
|
|