Question

In: Other

2.00-mol of a monatomic ideal gas goes from State A to State D via the path...

2.00-mol of a monatomic ideal gas goes from State A to State D via the path A?B?C?D:

State A PA=10.0atm, VA=12.50L
State B PB=10.0atm, VB=7.00L
State C PC=22.5atm, VC=7.00L
State D PD=22.5atm, VD=21.50L

Assume that the external pressure is constant during each step and equals the final pressure of the gas for that step.

Calculate q for this process.

Calculate w for this process.

Calculate ?E for this process

Calculate ?H for this process.

Solutions

Expert Solution

So, the answers are:

q=90.83 kJ

w = -36.35 kJ

(delta)U = 54.48 kJ

(delta)H = 90.83 kJ

We see that q=delta(H). This is because the process consists of steps of constant pressure and deltaH is defined as heat added at constant pressure.


Related Solutions

2.00-mol of a monatomic ideal gas goes from State A to State D via the path...
2.00-mol of a monatomic ideal gas goes from State A to State D via the path A→B→C→D: State A PA=13.0atm, VA=13.00L State B PB=13.0atm, VB=4.00L State C PC=22.5atm, VC=4.00L State D PD=22.5atm, VD=24.00L Assume that the external pressure is constant during each step and equals the final pressure of the gas for that step. Calculate q for this process. Calculate w for this process. Calculate ΔE for this process Calculate ΔH for this process.
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom
A monatomic ideal gas expands from 2.00 m3 to 2.95 m3 at a constant pressure of...
A monatomic ideal gas expands from 2.00 m3 to 2.95 m3 at a constant pressure of 2.80 ✕ 105 Pa. Find the following. (a) Find the work done on the gas. J (b) Find the thermal energy Q transferred into the gas by heat. J (c) Find the change in the internal energy of the gas. J
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶ B is an isothermal process. B⟶ C is an isovolumetric process. C⟶ A is an adiabatic process. (i) Determine the work done on the ideal gas during each cycle of this heat engine, (ii) Determine the heat flow into the gas during each cycle of this heat engine (iii) Determine the net work done by one cycle (iv) Determine the efficiency of this heat...
A quantity of 1.0 mol of an ideal monatomic gas is taken through a complete cycle...
A quantity of 1.0 mol of an ideal monatomic gas is taken through a complete cycle in three steps:  (1→2) increase in pressure at constant volume, (2→3) adiabatic expansion and (3→1) decrease in volume at constant pressure.  Temperature and pressure values are given below. T1 = 300 K       T2 = 600 K       T3 = 455 K       P1 = 1 atm = 1 x 105 Pa A.  Accurately illustrate and label the three steps of the cycle on the P-V diagram below.  (15 pts) B.  Apply the First Law...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = 5 2 R always starts at pressure 1.00 ✕ 105 Pa and temperature 350 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = (5/2)R always starts at pressure 2.00 ✕ 105 Pa and temperature 300 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the work done...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 227.5×10−6 m3 to a final volume of 101.0×10−6 m3. If 8890 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas?
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes from an initial volume of 222.0 × 10 − 6 m 3 to a final volume of 123.5 × 10 − 6 m 3 . If 7.60 × 10 3 J is released by the gas during this process, what are the temperature T and the final pressure p f of the gas
A reversible engine contains 0.350 mol of ideal monatomic gas, initially at 586 K and confined...
A reversible engine contains 0.350 mol of ideal monatomic gas, initially at 586 K and confined to a volume of 2.42 L . The gas undergoes the following cycle: ⋅ Isothermal expansion to 4.74 L ⋅ Constant-volume cooling to 252 K ⋅ Isothermal compression to 2.42 L ⋅ Constant-volume heating back to 586 K Determine the engine's efficiency in percents, defined as the ratio of the work done to the heat absorbed during the cycle.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT