In: Physics
A block of mass m is placed in a smooth-bored spring gun at the bottom of the incline so that it compresses the spring by an amount xc. The spring has spring constant k. The incline makes an angle θ with the horizontal and the coefficient of kinetic friction between the block and the incline is μ. The block is released, exits the muzzle of the gun, and slides up an incline a total distance L.
Part A
Find L, the distance traveled along the incline by the block after it exits the gun. Ignore friction when the block is inside the gun. Also, assume that the uncompressed spring is just at the top of the gun (i.e., the block moves a distance xc while inside of the gun). Use g for the magnitude of acceleration due to gravity.
Express the distance L in terms of xc, k, m, g, μ, and θ.
Part A Answer
There are many different formulas you can use, but the simplified form that mastering physics is looking for is this one:
L = ((0.5 * xc^2 * k) – m * g * sin(θ) * xc) / (m * g * (sin(θ) + cos(θ)*μ))
L = ((0.5 * xc^2 * k) – m * g * sin(θ) * xc) / (m * g * (sin(θ) + cos(θ)*μ))