Question

In: Physics

What magnetic field strength will allow the electron to pass between the plates without being deflected?

An electron travels with speed 1.5 times 107 m/s between the two parallel charged plates shown in the figure(Figure 1). The plates are separated by 1.0 cm and are charged by a 200 V battery.  

image.png

What magnetic field strength will allow the electron to pass between the plates without being deflected?  Express your answer to two significant figures and include the appropriate units.  


What is the direction of the magnetic field?  

upward  

downward  

into the page  

out of the page

Solutions

Expert Solution


Related Solutions

1 a) What is the approximate electric field strength and magnetic field strength of the electromagnetic...
1 a) What is the approximate electric field strength and magnetic field strength of the electromagnetic waves radiated by a 60-W lightbulb, as measured 5.5 m from the bulb? You can assume that the bulb is 100% efficient in converting electrical energy to light energy. b.) Incandescent light bulbs are very inefficient. Find the electric field strength and magnetic field strength assuming 5% efficiency. Please show all work, thank you!
demonstrate that the magnetic field induced by the displacement current present between the plates of a...
demonstrate that the magnetic field induced by the displacement current present between the plates of a parallel plate capacitor of radius R, separated at a distance d, which is being charged by a current I, is maximum just at the edge of the plates. Draw a picture that shows the Amperian spiral you are considering, as well as the surface related to it. Suggestion beware of different surfaces, characterize each with a different radius.
What is the difference between the magnetic field of the bar magnet and the magnetic field...
What is the difference between the magnetic field of the bar magnet and the magnetic field of the solenoid? (also in terms of how the lines and direction should differ)
An electron is moving north; what direction should a magnetic field be oriented, so the magnetic...
An electron is moving north; what direction should a magnetic field be oriented, so the magnetic force on the electron just balances the gravitational force? A square loop is in the x-y plane, with its top and bottom parallel with the x-axis, and its sides parallel with the y-axis. It carries a clockwise current when viewed from the positive z-axis.    There is a constant magnetic field pointed in the x-axis direction.  What are then directions of the magnetic forces on the four...
True/False 1) A wire carrying current due east in a magnetic field is deflected due north....
True/False 1) A wire carrying current due east in a magnetic field is deflected due north. The magnetic field must have a component that points into the ground 2) The self-inductance of a solenoid depends on the geometry of the solenoid and is independent of the current flowing through it 3) A horizontal bar that is oriented east to west is pulled vertically upward through a magnetic field that points due north. The east end of the bar is at...
1.1: 1. Classification of materials according to the relationship between magnetic field strength and temporary magnetizations....
1.1: 1. Classification of materials according to the relationship between magnetic field strength and temporary magnetizations. 2. Name of the components of magnetic field strength and magnetic flux density at the intersections of the hysteresis cycle graph with OX and OY axis. 3. Define the temporary component of magnetization. 4. Shape law of magnetic field bonding for linear and isotropic materials. 5. Formula of the law of temporary magnetization. 6. Define magnetic susceptibility. 7. Define the permanent component of magnetization....
What are the basic similarities and differences between an electric field and a magnetic field?
What are the basic similarities and differences between an electric field and a magnetic field?
What magnetic field is required to constrain an electron with a kinetic energy of 404 eV...
What magnetic field is required to constrain an electron with a kinetic energy of 404 eV to a circular path of radius 0.777 m?
What magnetic field strength will levitate the 2.0 g wire in the figure(Figure 1)?
You may want to review (Pages 821 822) For help with math skills, you may want to review: Rearrangement of Equations Involving Multiplication and Division For general problem-solving tips and strategies for this topic, you may want to view a Video Tutor Solution of The workings of a speaker.Part A What magnetic field strength will levitate the 2.0 g wire in the figure(Figure 1)? Assume that I = 1.6 A and d = 11 cm.Express your answer to two significant figures and include the...
a) What current is needed to generate the magnetic field strength of 5.0*10^-5 T at a...
a) What current is needed to generate the magnetic field strength of 5.0*10^-5 T at a point 2.3 cm from a long, straight wire? b) What current is needed to generate the magnetic field strength of 5.0*10^-3 T at a point 2.3 cm from a long, straight wire? c) What current is needed to generate the magnetic field strength of 1 T at a point 2.3 cm from a long, straight wire? d) What current is needed to generate the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT