Question

In: Civil Engineering

(9) Assume on average 10 passengers arrive per minute. Assuming poisson arrivals and departures, estimate the...

(9) Assume on average 10 passengers arrive per minute. Assuming poisson arrivals and departures, estimate the gain (if any) in ‘average time spent in system per passenger’ if TSA decides to replace 4 type-A security scanners with 3 type-B security scanners. The service rate per scanner for type-A scanners is 3 passengers per minute and type-B scanners is 5 passengers per minute?

Solutions

Expert Solution

  (passengers/minute).

(passengers/minute).

S= Number of scanners.

System utilization factor,

Length of queue,

Average time spent in system= (minutes/passenger).


Related Solutions

Airline passengers arrive randomly and independently at the passenger check-in counter. The average arrival rate is 10 passengers per minute.
POISSON PROBABILITY DISTRIBUTION Airline passengers arrive randomly and independently at the passenger check-in counter. The average arrival rate is 10 passengers per minute. to. Calculate the probability that no passenger will arrive within one minute.     μ = 10 in 1 minute x = 0 in 1 minute b. Find the probability that three or fewer passengers will arrive within one minute.     μ = 10 in 1 minute x ≤ 3 in 1 minute >>> P (x = 0) + P...
Customers arrive at a grocery store at an average of 2.2 per minute. Assume that the...
Customers arrive at a grocery store at an average of 2.2 per minute. Assume that the number of arrivals in a minute follows the Poisson distribution. Provide answers to the following to 3 decimal places. Part a) What is the probability that exactly two customers arrive in a minute? Part b) Find the probability that more than three customers arrive in a two-minute period. Part c) What is the probability that at least seven customers arrive in three minutes, given...
At Baywatch City Airport 3 passengers per minute arrive on average. Inter-arrival times are exponentially distributed....
At Baywatch City Airport 3 passengers per minute arrive on average. Inter-arrival times are exponentially distributed. Arriving (actually departing) passengers go through a checkpoint consisting of a metal detector and baggage X-ray machine. Whenever a checkpoint is in operation, two employees are required. These two employees work simultaneously to check a single passenger. A checkpoint can check an average of 3 passengers per minute, where the time to check a passenger is also exponentially distributed. Why is this an M/M/1,...
Suppose passengers arrive at the MTA train station following a Poisson distribution with parameter 9 and...
Suppose passengers arrive at the MTA train station following a Poisson distribution with parameter 9 and the unit of time 1 hour. Next train will arrive either 1 hour from now or 2 hours from now, with a 50/50 probability. i. E(train arrival time) ii. E(number of people who will board the train) iii. var(number of people who will board the train)
Customers arrive at a local grocery store at an average rate of 2 per minute. (a)...
Customers arrive at a local grocery store at an average rate of 2 per minute. (a) What is the chance that no customer will arrive at the store during a given two minute period? (b) Since it is a “Double Coupon” day at the store, approximately 70% of the customers coming to the store carry coupons. What is the probability that during a given two-minute period there are exactly four (4) customers with coupons and one (1) without coupons? (c)...
The number of customer arrivals at a bank's drive-up window in a 15-minute period is Poisson...
The number of customer arrivals at a bank's drive-up window in a 15-minute period is Poisson distributed with a mean of seven customer arrivals per 15-minute period. Define the random variable x to be the time (in minutes) between successive customer arrivals at the bank's drive-up window. (a) Write the formula for the exponential probability curve of x. (c) Find the probability that the time between arrivals is (Round your answers to 4 decimal places.) 1.Between one and two minutes....
An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the...
An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the average service time for each customer is 4 minutes, and both interarrival times and service times are exponential. What is the arrival rate per minute? What is the servicing rate per minute? What is the servicing rate per hour? What is the traffic intensity? What is the probability that the teller is idle? What is the average number of cars waiting in line for...
Poisson 1. Passengers of the areas lines arrive at random and independently to the documentation section...
Poisson 1. Passengers of the areas lines arrive at random and independently to the documentation section at the airport, the average frequency of arrivals is 1.0 passenger per minute. to. What is the probability of non-arrivals in a one minute interval? b. What is the probability that three or fewer passengers arrive at an interval of one minute? C. What is the probability not arrived in a 30 second interval? d. What is the probability that three or fewer passengers...
Find each Poisson probability, using a mean arrival rate of 10 arrivals per hour.    (a)...
Find each Poisson probability, using a mean arrival rate of 10 arrivals per hour.    (a) Seven arrivals. (Round your answer to 4 decimal places.)      Poisson probability        (b) Three arrivals. (Round your answer to 4 decimal places.)      Poisson probability        (c) Fewer than five arrivals. (Round your answer to 4 decimal places.)      Poisson probability       (d) At least 11 arrivals. (Round your answer to 4 decimal places.)      Poisson probability   
If telephone purchase orders are Poisson distributed with an average of 3 orders per minute, answer...
If telephone purchase orders are Poisson distributed with an average of 3 orders per minute, answer the following: 1. probability at most 3 in a 30 second interval 2. probability of at least 4 in a 45 second interval 3. probability of 1, 2, or 3, in a 60 second interval 4. probability that of 5 different 45 second intervals 2 or more of the intervals would entail at least 4 orders each 5. standard deviation of the expected number...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT