In: Operations Management
The Longmont company in Charlette, North Carolina, asked you to develop quarterly forecasts of combine sales for next year. Combine sales are seasonal, and the data on the quarterly sales for the last four years are as follows:
Quarter | Year 1 | Year 2 | Year 3 | Year 4 |
1 | 55 | 85 | 178 | 256 |
2 | 37 | 23 | 101 | 193 |
3 | 89 | 130 | 145 | 209 |
4 | 110 | 156 | 167 | 167 |
Chad Johnson estimates the total demand for the next year (Year 5) at Longmont. Use the seasonally adjusted exponential smoothing model to develop the forecast for each quarter. Use the appropriate assumptions to intialize the model. Required column headings in Excel are Periods, Years, Quarters, Demand (sales data), Base Value, Seasonality Index, Trend, and Forecast. Use 3 decimal places. Set up your solution using α = 0.2, β= 0.2, γ = 0.8, MAD = 54.845, and Bias = 4.926.
The table will consist of 8 colums and 20 rows for the 20 periods.
Quarter | Year 1 | Year 2 | Year 3 | Year 4 | Period Average | SI = Period Average/Overall Average |
1 | 55 | 85 | 178 | 256 | 143.5 | 1.0928 |
2 | 37 | 23 | 101 | 193 | 88.5 | 0.6740 |
3 | 89 | 130 | 145 | 209 | 143.25 | 1.0909 |
4 | 110 | 156 | 167 | 167 | 150 | 1.1423 |
Overall Average | 131.3125 |
Actual | SI | Deseasonlise = Actual/SI | ||
Year 1 | Q1 | 55 | 1.0928 | 50.329 |
Q2 | 37 | 0.6740 | 54.899 | |
Q3 | 89 | 1.0909 | 81.583 | |
Q4 | 110 | 1.1423 | 96.296 | |
Year 2 | Q1 | 85 | 1.0928 | 77.781 |
Q2 | 23 | 0.6740 | 34.126 | |
Q3 | 130 | 1.0909 | 119.167 | |
Q4 | 156 | 1.1423 | 136.565 | |
Year 3 | Q1 | 178 | 1.0928 | 162.882 |
Q2 | 101 | 0.6740 | 149.859 | |
Q3 | 145 | 1.0909 | 132.917 | |
Q4 | 167 | 1.1423 | 146.195 | |
Year 4 | Q1 | 256 | 1.0928 | 234.258 |
Q2 | 193 | 0.6740 | 286.365 | |
Q3 | 209 | 1.0909 | 191.583 | |
Q4 | 167 | 1.1423 | 146.195 |
X | Deseasonal data,y | X2 | Y2 | xy | |
1 | 50.329 | 1 | 2532.991 | 50.329 | |
2 | 54.899 | 4 | 3013.901 | 109.798 | |
3 | 81.583 | 9 | 6655.840 | 244.750 | |
4 | 96.296 | 16 | 9272.888 | 385.183 | |
5 | 77.781 | 25 | 6049.872 | 388.905 | |
6 | 34.126 | 36 | 1164.612 | 204.758 | |
7 | 119.167 | 49 | 14200.694 | 834.167 | |
8 | 136.565 | 64 | 18649.999 | 1092.520 | |
9 | 162.882 | 81 | 26530.678 | 1465.942 | |
10 | 149.859 | 100 | 22457.859 | 1498.595 | |
11 | 132.917 | 121 | 17666.840 | 1462.083 | |
12 | 146.195 | 144 | 21372.856 | 1754.335 | |
13 | 234.258 | 169 | 54876.735 | 3045.352 | |
14 | 286.365 | 196 | 82004.978 | 4009.112 | |
15 | 191.583 | 225 | 36704.174 | 2873.750 | |
16 | 146.195 | 256 | 21372.856 | 2339.113 | |
Total | 136 | 2101 | 1496 | 344527.8 | 21758.69 |
Average | 8.5 | 131.3125 | 93.5 | 21532.99 | 1359.918 |
Y = mx+b
m = ((16*21758.69) - (136*2101))/((16*1496)-(136*136)) = 11.47115
b = (2101 - (11.47115*136))/16 = 33.808
y = 11.471x + 33.808
alpha = | 0.20 | ||||||||
beta = | 0.20 | ||||||||
period | month | sales | level | trend | forecast | error | ABS(error) | Squared Error | Percent Error |
1 | Q1 | 50.329 | 50.33 | 0.00 | - | - | - | - | - |
2 | Q2 | 54.899 | 50.33 | 0.00 | 50.33 | 4.57 | 4.57 | 20.89 | 0.08 |
3 | Q3 | 81.583 | 51.24 | 0.18 | 51.43 | 30.16 | 30.16 | 909.48 | 0.37 |
4 | Q4 | 96.296 | 57.46 | 1.39 | 58.85 | 37.45 | 37.45 | 1402.47 | 0.39 |
5 | Q1 | 77.781 | 66.34 | 2.89 | 69.22 | 8.56 | 8.56 | 73.23 | 0.11 |
6 | Q2 | 34.126 | 70.93 | 3.23 | 74.16 | -40.04 | 40.04 | 1603.03 | 1.17 |
7 | Q3 | 119.167 | 66.16 | 1.63 | 67.78 | 51.38 | 51.38 | 2640.12 | 0.43 |
8 | Q4 | 136.565 | 78.06 | 3.68 | 81.74 | 54.82 | 54.82 | 3005.33 | 0.40 |
9 | Q1 | 162.882 | 92.71 | 5.88 | 98.58 | 64.30 | 64.30 | 4134.24 | 0.39 |
10 | Q2 | 149.859 | 111.44 | 8.45 | 119.89 | 29.97 | 29.97 | 898.06 | 0.20 |
11 | Q3 | 132.917 | 125.89 | 9.65 | 135.53 | -2.62 | 2.62 | 6.84 | 0.02 |
12 | Q4 | 146.195 | 135.01 | 9.54 | 144.55 | 1.64 | 1.64 | 2.70 | 0.01 |
13 | Q1 | 234.258 | 144.88 | 9.61 | 154.49 | 79.77 | 79.77 | 6363.32 | 0.34 |
14 | Q2 | 286.365 | 170.44 | 12.80 | 183.24 | 103.13 | 103.13 | 10634.77 | 0.36 |
15 | Q3 | 191.583 | 203.87 | 16.92 | 220.79 | -29.21 | 29.21 | 852.95 | 0.15 |
16 | Q4 | 146.195 | 214.95 | 15.76 | 230.70 | -84.51 | 84.51 | 7141.67 | 0.58 |
20.63 | 29.59 | 1336.04 | 0.33 | ||||||
BIAS | MAD | MSE | MAPE |
y = 11.471x + 33.808
x | Forecast | SI | Reseasonlise = Forecast*SI | ||
Year 5 | Q1 | 17 | 228.817 | 1.093 | 250.054 |
Q2 | 18 | 240.288 | 0.674 | 161.946 | |
Q3 | 19 | 251.760 | 1.091 | 274.647 | |
Q4 | 20 | 263.231 | 1.142 | 300.692 |