In: Finance
(Future value) Leslie Mosallam, who recently sold her Porsche, placed $10, 000 in a savings account paying annual compound interest of 5 percent. a.Calculate the amount of money that will accumulate if Leslie leaves the money in the bank for 2, 6, and 16 year(s). b.Suppose Leslie moves her money into an account that pays 7 percent or one that pays 9 percent. Rework part (a) using 7 percent and 9 percent. c.What conclusions can you draw about the relationship between interest rates, time, and future sums from the calculations you just did? a.After placing $10, 000 in a savings account paying annual compound interest of 5 percent, the amount of money that will accumulate if Leslie leaves the money in the bank for 2 year(s) is $
1)
Future value after 2 years = Present value (1 + r)n
Future value after 2 years = 10,00 (1 + 0.05)2
Future value after 2 years = 10,00 * 1.1025
Future value after 2 years = 11,025.00
Future value after 6 years = Present value (1 + r)n
Future value after 6 years = 10,000 (1 + 0.05)6
Future value after 6 years = 10,000 * 1.3400956
Future value after 6 years = 13,400.96
Future value after 16 years = Present value (1 + r)n
Future value after 16 years = 10,000 (1 + 0.05)16
Future value after 16 years = 10,000 * 2.1828746
Future value after 16 years = 21,828.75
2)
7 percent:
Future value after 2 years = Present value (1 + r)n
Future value after 2 years = 10,000 + 0.07)2
Future value after 2 years = 10,000 * 1.1449
Future value after 2 years = 11,449.00
Future value after 6 years = Present value (1 + r)n
Future value after 6 years = 10,000 (1 + 0.07)6
Future value after 6 years = 10,000 * 1.5007304
Future value after 6 years = 15,007.30
Future value after 16 years = Present value (1 + r)n
Future value after 16 years = 10,000 (1 + 0.07)16
Future value after 16 years = 10,000 * 2.9521637
Future value after 16 years = 29,521.64
9 percent:
Future value after 2 years = Present value (1 + r)n
Future value after 2 years = 10,000 (1 + 0.09)2
Future value after 2 years = 10,000 * 1.1881
Future value after 2 years = 11,881.00
Future value after 6 years = Present value (1 + r)n
Future value after 6 years = 10,000 (1 + 0.09)6
Future value after 6 years = 10,000 * 1.6771
Future value after 6 years = 16,771.00
Future value after 16 years = Present value (1 + r)n
Future value after 16 years = 10,000 (1 + 0.09)16
Future value after 16 years = 10,000 * 3.9703059
Future value after 16 years = 39,703.06
There is a direct relationship between future value and time & interest rate. As time and interest rate increases, future value also increases.