Question

In: Physics

using energy: a mass, m1 = 5kg, resting on a frictionless ramp is connected to a...

using energy: a mass, m1 = 5kg, resting on a frictionless ramp is connected to a cable that passes over a pulley which is then attached to a second hanging mass, m2 = 2. see diagram. if the blocks are released from rest, then how far will the have moved when their velocities are 4 m/s

Solutions

Expert Solution

Given that :

mass of the block 1, m1 = 5 kg

mass of the block 2, m2 = 2 kg

According to figure, we have

T = m1 a                                                   { eq.1 }

and   m2 g - T = m2 a                                                    { eq.2 }

equating above two equations, we get

m2 g - m1 a = m2 a     

m2 g = a ( m1 + m2)

or   a = m2 g / ( m1 + m2)                                                             { eq.3 }

where, g = acceleration due to gravity = 9.8 m/s2

inserting the values in eq.3,

a = (2 kg) (9.8 m/s2) [(5 kg) + (2 kg)

a = (19.6 kg.m/s2) / (7 kg)

a = 2.8 m/s2

if the blocks are released from rest, then distance travelled to be moved when their velocities are 4 m/s which is given as :

using equation of motion 3,

v2 = v02 + 2 a d                                                              { eq.4 }

where, v0 = 0 m/s

inserting the values in eq.4,

(4 m/s)2 = (0 m/s)2 + 2 (2.8 m/s2) d

(16 m2/s2) = (5.6 m/s2) d

d = 2.85 m


Related Solutions

A 10kg block is resting in the middle of the ramp frictionless ramp. The ramp has...
A 10kg block is resting in the middle of the ramp frictionless ramp. The ramp has an angle of inclination of 37 degrees with respect to the horizontal surface, and a length of 10 meters. The coefficient of static friction between the block and the ramp is .37, the coefficient of kinetic friction is .25. A string is tied from the block and moved up the ramp, over a frictionless pulley and tied to a 15kg block hanging freely 2m...
A block with mass M1 rests on a frictionless table. It is connected by a massless...
A block with mass M1 rests on a frictionless table. It is connected by a massless string to a block with mass M2, which hangs below the edge of the table. The system is released from rest at time t = 0. Find the distance block M1 moves in time t. You may assume that the string passes over a massless, frictionless pulley at the edge of the table to assist your calculations.
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made to collide with a second cart of mass m2 = 24 kg which then heads into a vertical loop of radius 0.25 m (a) Determine the height h at which cart #1 would need to start from to make sure that cart #2 completes the loop without leaving the track. Assume an elastic collision. (b) Find the height needed if instead the more massive...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
A mass m1 = 5.6 kg rests on a frictionless table and connected by a massless...
A mass m1 = 5.6 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.7 kg. A force of magnitude F = 44 N pulls m1 to the left a distance d = 0.88 m. Initally both blocks are at rest. 1) How much work is done by the force F on the two block system? J 2) How much work is done by the normal force on m1 and m2? J...
A mass m1 = 4.4 kg rests on a frictionless table and connected by a massless...
A mass m1 = 4.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 3.8 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. 1)How much work is done by gravity on the two block system? 2)How much work is done by the normal force on m1? 3)What is the final speed of the two blocks? 4)How much...
A mass m1 = 4.7 kg rests on a frictionless table and connected by a massless...
A mass m1 = 4.7 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.3 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.76 m. 1. How much work is done by gravity on the two block system? 2. How much work is done by the normal force on m1? 3. What is the final speed of the two...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.2 m and then collides with stationary block 2, which has mass m2 = 4m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.55 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 3.3 m and then collides with stationary block 2, which has mass m2 = 5m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?
A cube of mass m1 glides through from rest along a frictionless quarter ramp from height...
A cube of mass m1 glides through from rest along a frictionless quarter ramp from height 9 m and then crashes with stationary cube of mass m2 (m2=3m1). After the impact (INELASTIC collision), the second cube slides into an area where the coefficient of is 0.54 and stops after travelling a certain distance. What is the distance traveled by the second cube?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT