Determine if the following series converge or diverge. If it
converges, find the sum.
a. ∑n=(3^n+1)/(2n) (upper limit of sigma∞, lower limit is
n=0)
b.∑n=(cosnπ)/(2) (upper limit of sigma∞ , lower limit is n=
1
c.∑n=(40n)/(2n−1)^2(2n+1)^2 (upper limit of sigma ∞ lower limit
is n= 1
d.)∑n = 2/(10)^n (upper limit of sigma ∞ , lower limit of sigma
n= 10)
1) Find the radius of convergence and interval
of convergence of the given series Σ x^2n/n!
2) Find the power series representation of
f(x)=(x-1)/(x+2) first then find its interval of convergence.
1. Test the series below for convergence using the Root
Test.
∞∑n=1 (2n/7n+5)^n
The limit of the root test simplifies to lim n→∞ |f(n)| where
f(n)=
The limit is:
Based on this, the series
Diverges
Converges
2. Multiple choice question. We want to use the
Alternating Series Test to determine if the series:
∞∑k=4 (−1)^k+2 k^2/√k5+3
converges or diverges.
We can conclude that:
The Alternating Series Test does not apply because the terms of
the series do not alternate.
The...
Use the formula for the sum of the first n terms of an arithmetic series to find the sum of the first eleven terms of the arithmetic series 2.5, 4, 5.5, … .
1a. Proof by induction: For every positive integer
n,
1•3•5...(2n-1)=(2n)!/(2n•n!). Please explain what the exclamation
mark means. Thank you for your help!
1b. Proof by induction: For each integer n>=8,
there are nonnegative integers a and b such that n=3a+5b