Question

In: Statistics and Probability

Suppose x has a distribution with μ = 22 and σ = 17. (a) If a...

Suppose x has a distribution with μ = 22 and σ = 17.

(a) If a random sample of size n = 40 is drawn, find μx, σx and P(22 ≤ x ≤ 24). (Round σx to two decimal places and the probability to four decimal places.)

μx =
σx =
P(22 ≤ x ≤ 24) =


(b) If a random sample of size n = 74 is drawn, find μx, σx and P(22 ≤ x ≤ 24). (Round σx to two decimal places and the probability to four decimal places.)

μx =
σx =
P(22 ≤ x ≤ 24) =


(c) Why should you expect the probability of part (b) to be higher than that of part (a)? (Hint: Consider the standard deviations in parts (a) and (b).)
The standard deviation of part (b) is  ---Select--- the same as larger than smaller than part (a) because of the  ---Select--- smaller larger same sample size. Therefore, the distribution about μx is  ---Select--- wider narrower the same .

Solutions

Expert Solution

We have given,

Suppose x has a distribution with μ = 22 and σ = 17.

(a) If a random sample of size n = 40 is drawn,

Therefore,

=P[0<z<0.74]

=0.7704-0.5.....................................by using normal probability table.

=0.2704

(b) If a random sample of size n = 74 is drawn,

Therefore, P[22<x<24]

=P[0<z<1.01]

=0.8438-0.5.............................by using normal probability table.

=0.3438

(c)

The standard deviation of part (b) is smaller than part (a) because of the larger sample size. Therefore, the distribution about μx is the same .


Related Solutions

Suppose x has a distribution with μ = 22 and σ = 20. (a) If a...
Suppose x has a distribution with μ = 22 and σ = 20. (a) If a random sample of size n = 37 is drawn, find μx, σ x and P(22 ≤ x ≤ 24). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(22 ≤ x ≤ 24) = (b) If a random sample of size n = 59 is drawn, find μx, σ x and P(22 ≤ x ≤...
Suppose x has a distribution with μ = 23 and σ = 17. (a) If a...
Suppose x has a distribution with μ = 23 and σ = 17. (a) If a random sample of size n = 46 is drawn, find μx, σ x and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 63 is drawn, find μx, σ x and P(23 ≤ x ≤...
Suppose x has a distribution with μ = 17 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 17 and σ = 15. (a) If a random sample of size n = 42 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 74 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx...
Suppose x has a distribution with μ = 17 and σ = 12. (a) If a...
Suppose x has a distribution with μ = 17 and σ = 12. (a) If a random sample of size n = 33 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.) P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 71 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places...
Suppose x has a distribution with μ = 17 and σ = 13. (a) If a...
Suppose x has a distribution with μ = 17 and σ = 13. (a) If a random sample of size n = 42 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 67 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx...
Suppose x has a distribution with μ = 17 and σ = 9.(a) If a random...
Suppose x has a distribution with μ = 17 and σ = 9.(a) If a random sample of size n = 45 is drawn, find μx, σ x and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.)μx = σ x = P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 72 is drawn, find μx, σ x and P(17 ≤ x ≤ 19). (Round...
Suppose x has a distribution with μ = 28 and σ = 17. (a) If random...
Suppose x has a distribution with μ = 28 and σ = 17. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? Yes, the x distribution is normal with mean μx = 28 and σx = 4.25.Yes, the x distribution is normal with mean μx = 28 and σx = 1.1.    Yes, the x distribution is normal with mean μx = 28 and σx = 17.No, the sample...
Suppose x has a distribution with μ = 78 and σ = 17. (a) If random...
Suppose x has a distribution with μ = 78 and σ = 17. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? Yes, the x distribution is normal with mean μx = 78 and σx = 4.25.Yes, the x distribution is normal with mean μx = 78 and σx = 1.1.     Yes, the x distribution is normal with mean μx = 78 and σx = 17.No, the sample...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 70 is drawn, find μx, σ x and P(11 ≤ x ≤...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a random sample of size n = 34 is drawn, find μx, σ x and P(25 ≤ x ≤ 27). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(25 ≤ x ≤ 27) = (b) If a random sample of size n = 62 is drawn, find μx, σ x and P(25 ≤ x ≤...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT