In: Statistics and Probability
We are interested in the relationship between the compensation of Chief Executive Officers (CEO) of firms and the return on equity of their respective firm, using the dataset below. The variable salary shows the annual salary of a CEO in thousands of dollars, so that y = 150 indicates a salary of $150,000. Similarly, the variable ROE represents the average return on equity (ROE)for the CEO’s firm for the previous three years. A ROE of 20 indicates an average return of 20%.
obs | salary | roe |
1 | 1095 | 14.1 |
2 | 1001 | 10.9 |
3 | 1122 | 23.5 |
4 | 578 | 5.9 |
5 | 1368 | 13.8 |
6 | 1145 | 20 |
7 | 1078 | 16.4 |
8 | 1094 | 16.3 |
9 | 1237 | 10.5 |
10 | 833 | 26.3 |
11 | 567 | 25.9 |
12 | 933 | 26.8 |
13 | 1339 | 14.8 |
14 | 937 | 22.3 |
15 | 2011 | 56.3 |
16 | 1585 | 12.6 |
17 | 905 | 20.4 |
18 | 1058 | 1.9 |
19 | 922 | 19.9 |
20 | 1220 | 15.4 |
21 | 1022 | 38.7 |
22 | 759 | 16.4 |
23 | 1414 | 24.4 |
24 | 1041 | 15.6 |
25 | 1688 | 14.4 |
26 | 2983 | 19 |
27 | 1160 | 16.1 |
28 | 3844 | 12.1 |
29 | 476 | 16.2 |
30 | 1492 | 18.4 |
31 | 1024 | 14.2 |
32 | 1593 | 14.9 |
33 | 427 | 12.4 |
34 | 829 | 17.1 |
35 | 797 | 16.9 |
36 | 577 | 18.1 |
37 | 1342 | 10.9 |
38 | 1774 | 19.3 |
39 | 709 | 18.3 |
40 | 860 | 18.4 |
41 | 1336 | 13.8 |
42 | 516 | 13.7 |
43 | 931 | 12.7 |
44 | 815 | 15.1 |
45 | 1681 | 16.5 |
46 | 568 | 10.2 |
47 | 775 | 19.6 |
48 | 1188 | 12.8 |
49 | 782 | 15.9 |
50 | 1170 | 17.3 |
51 | 1469 | 8.5 |
52 | 916 | 16.4 |
53 | 1070 | 19.5 |
54 | 894 | 19.2 |
55 | 829 | 15.9 |
56 | 780 | 19.9 |
57 | 2327 | 28.1 |
58 | 717 | 25 |
59 | 1368 | 15 |
60 | 2028 | 12.6 |
61 | 1195 | 20.3 |
62 | 256 | 22.7 |
63 | 775 | 14.8 |
64 | 1407 | 13.2 |
65 | 543 | 10.3 |
66 | 874 | 17.7 |
67 | 1287 | 10 |
68 | 1248 | 15.6 |
69 | 875 | 6.8 |
70 | 925 | 12.4 |
71 | 798 | 13.1 |
72 | 760 | 15.8 |
73 | 600 | 12.8 |
74 | 991 | 15.3 |
75 | 1570 | 0.5 |
76 | 911 | 16.5 |
77 | 1360 | 15.1 |
78 | 700 | 13 |
79 | 741 | 11.1 |
80 | 1097 | 8.9 |
81 | 953 | 17.5 |
82 | 441 | 15.9 |
83 | 595 | 14.2 |
84 | 1067 | 9.3 |
85 | 1298 | 9.5 |
86 | 1798 | 15.5 |
87 | 4143 | 14.4 |
88 | 1336 | 11.1 |
89 | 1750 | 15.9 |
90 | 912 | 16.4 |
91 | 1892 | 8.6 |
92 | 833 | 24.6 |
93 | 1142 | 15.4 |
94 | 1159 | 16.9 |
95 | 1283 | 7.2 |
96 | 2109 | 11.6 |
97 | 1039 | 26.4 |
98 | 992 | 21.4 |
99 | 1253 | 19.2 |
100 | 721 | 15.1 |
101 | 1351 | 9 |
102 | 1391 | 9.4 |
103 | 1245 | 19 |
104 | 1550 | 3.5 |
105 | 2150 | 22.1 |
106 | 1846 | 10.9 |
107 | 573 | 15.1 |
108 | 6640 | 10.2 |
109 | 959 | 17.3 |
110 | 612 | 33.3 |
111 | 1820 | 22.8 |
112 | 1411 | 11.1 |
113 | 1026 | 12.4 |
114 | 1287 | 20.9 |
115 | 800 | 6.7 |
116 | 1115 | 7.1 |
117 | 1631 | 11.8 |
118 | 1910 | 14 |
119 | 996 | 10.1 |
120 | 918 | 6.4 |
121 | 1261 | 12.4 |
122 | 1053 | 17.6 |
123 | 1221 | 15.1 |
124 | 1738 | 23.6 |
125 | 3142 | 35.7 |
126 | 1900 | 23.2 |
127 | 427 | 12.4 |
128 | 1700 | 44.4 |
129 | 360 | 2.1 |
130 | 459 | 18.4 |
131 | 1340 | 16.1 |
132 | 729 | 15.1 |
133 | 223 | 22.7 |
134 | 2101 | 23.4 |
135 | 1082 | 25.7 |
136 | 1781 | 27 |
137 | 791 | 19.9 |
138 | 2092 | 43.7 |
139 | 1573 | 16.4 |
140 | 1045 | 11.6 |
141 | 1694 | 24.8 |
142 | 453 | 26.2 |
143 | 1130 | 44.5 |
144 | 1334 | 22.3 |
145 | 1344 | 22.3 |
146 | 1585 | 35.1 |
147 | 1946 | 13.1 |
148 | 1619 | 11 |
149 | 1620 | 19.4 |
150 | 967 | 28.5 |
151 | 1431 | 43.9 |
152 | 1231 | 26.8 |
153 | 770 | 15.7 |
154 | 1594 | 15 |
155 | 1568 | 28.2 |
156 | 995 | 15.4 |
157 | 1077 | 20 |
158 | 1161 | 42.2 |
159 | 1401 | 19.6 |
160 | 1127 | 16.2 |
161 | 3068 | 21.5 |
162 | 730 | 29.5 |
163 | 729 | 22.6 |
164 | 11233 | 22.9 |
165 | 949 | 13 |
166 | 3646 | 7.8 |
167 | 1502 | 48.1 |
168 | 807 | 18 |
169 | 713 | 18 |
170 | 1489 | 21.7 |
171 | 736 | 21.3 |
172 | 1226 | 26.9 |
173 | 543 | 30.5 |
174 | 14822 | 19.4 |
175 | 890 | 15.6 |
176 | 1627 | 19.4 |
177 | 2408 | 29.1 |
178 | 2248 | 40.8 |
179 | 787 | 13.7 |
180 | 474 | 11.1 |
181 | 439 | 10.8 |
182 | 465 | 5.1 |
183 | 594 | 12.3 |
184 | 688 | 7.4 |
185 | 607 | 6.2 |
186 | 634 | 12.7 |
187 | 532 | 10.6 |
188 | 441 | 7.4 |
189 | 694 | 12.6 |
190 | 520 | 12.8 |
191 | 757 | 2.9 |
192 | 668 | 13.5 |
193 | 803 | 10.7 |
194 | 500 | 11.9 |
195 | 552 | 12.9 |
196 | 412 | 10.1 |
197 | 1100 | 7.3 |
198 | 959 | 14.6 |
199 | 333 | 13.8 |
200 | 503 | 8.9 |
201 | 448 | 14 |
202 | 732 | 12.9 |
203 | 720 | 14.5 |
204 | 808 | 14.7 |
205 | 930 | 9 |
206 | 525 | 15.5 |
207 | 658 | 12.1 |
208 | 555 | 13.7 |
209 | 626 | 14.4 |
a) Draw a boxplot and a histogram of the salary of CEO. Are there any apparent outliers in the data? Are there high leverage points?
b) Use your software to estimate the relationship and report your results.
??????? = ?0 + ?1???? + ??
c) Looking at a plot of the residuals against predicted values and at the normal probability plot of residuals, does the estimated model appear satisfactory?
a)
Outliers are those which have a high value of residual; i.e.- the difference between predicted Yi and the given Yi . (marked in red)
High Leverage Points are those points which do follow the regression line trend however they are far away from most of the data set points (marked in green)
b) beta0= 963.1913275 ; beta1=18.50118685
c)
Looking at the residual vs predicted salary plot we can see that there is no clear pattern that the residuals follow. Which means that linear assumption for the model is apt. Also it means that "variance of residual is same " assumption is true(homoscedastic).
However, there are a few outliers in the figure( high residual value points).
From the normal probability plot, we can see that residuals vs sample percentile is following a linear trend apart from a few points with high values of residuals( outliers). Therefore, the assumption that the residuals are normally distributed is true.
So, overall the model is satisfactory but it can be better if the outlying points are removed