In: Computer Science
The standard molar entropies of water ice, liquid, and vapor are $37.99, 69.91$, and $188.83 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively. On a single graph, show how the Gibbs energies of each of these phases vary with temperature.
Solution:
We know that $\Delta T$ (ice water) $<\Delta T_{\text {(liquid)}}<\Delta T$ (vapor)
by formula: $\Delta G_m = -S_m \Delta T$
We have $S_{m}^{\circ}$ is positive, $T>0 \Rightarrow G_m<0$
Phase | $S_{m}^{\circ}$ (J molK-1) | $G_m$ (J/mol) |
---|---|---|
Ice Water | 37.99 | -37.99 |
Liquid | 69.91 | -69.91 |
Vapor | 188.83 | -188.83 |
Therefore, $\Delta G_m$ (Ice Water) $< \Delta G_m($Liquid$) < \Delta G_m$ (Vapor)
Therefore, $\Delta G_m$ (Ice Water) $< \Delta G_m($Liquid$) < \Delta G_m$ (Vapor)