Question

In: Advanced Math

LU Decomposition (i). Prove that for n equal to 2 or 3 there is a non-singular...

LU Decomposition

(i). Prove that for n equal to 2 or 3 there is a non-singular square (n by n) matrix which has no LU decomposition with L unit lower triangular and U upper triangular. (In fact, this is true for any integer ≥ 2.)

(ii). We will see that all non-singular square matrices do have an LUP decomposition (some time soon in class). Here P is a permutation matrix, also defined in Appendix D and used in Chapter 28.

Show that the inverse of a permutation matrix P is also a permutation matrix. (You can do this by explicitly defining what P −1 when P is given.)

Solutions

Expert Solution


Related Solutions

Prove that the range of a matrix A is equal to the number of singular non-null...
Prove that the range of a matrix A is equal to the number of singular non-null values of the matrix and Explain how the condition number of a matrix A relates to its singular values.
Q: (LU decomposition) Find the LU decomposition of A = [-3 2 5 1; 12 -4...
Q: (LU decomposition) Find the LU decomposition of A = [-3 2 5 1; 12 -4 -20 -2; -6 0 15 1; -9 6 35 4]. You can use the compact method which works within a single matrix or you can build L and U separately. State L and U explicitly, and verify (in Matlab) that A = L*U. Hint: Matlab's built-in lu function isn't useful, since it pivots.
Find the singular value decomposition of A = [ (3 2 2), (2 3 2) ]...
Find the singular value decomposition of A = [ (3 2 2), (2 3 2) ] and determine the angle of rotation induced by U and V . Also, write the rank 1 decomposition of A in terms of the columns of U and rows of V . Can we do dimensionality reduction in this case?
Prove that 1^3 + 2^3 + · · · + n^3 = (1 + 2 +...
Prove that 1^3 + 2^3 + · · · + n^3 = (1 + 2 + · · · + n)^2 for every n ∈ N. That is, the sum of the first n perfect cubes is the square of the sum of the first n natural numbers. (As a student, I found it very surprising that the sum of the first n perfect cubes was always a perfect square at all.)
prove or disprove .if n is a non negative integer, then 5 divides 2 ⋅ 4^n...
prove or disprove .if n is a non negative integer, then 5 divides 2 ⋅ 4^n + 3⋅9^n.
a) Prove that n 3 − 91n 2 − 7n − 14 = Ω(n 3 )....
a) Prove that n 3 − 91n 2 − 7n − 14 = Ω(n 3 ). Your answer must clearly specify the constants c and n0. b) Let g(n) = 27n 2 + 18n and let f(n) = 0.5n 2 − 100. Find positive constants n0, c1 and c2 such that c1f(n) ≤ g(n) ≤ c2f(n) for all n ≥ n0. Be sure to explain how you arrived at the constants.
Use a direct proof to prove that 6 divides (n^3)-n whenever n is a non-negative integer.
Use a direct proof to prove that 6 divides (n^3)-n whenever n is a non-negative integer.
Prove that for every n ∈ N: a) (10^n + 3 * 4^(n+2)) ≡ 4 mod...
Prove that for every n ∈ N: a) (10^n + 3 * 4^(n+2)) ≡ 4 mod 19, [note that 4^3 ≡ 1 mod 9] b) 24 | (2*7^(n) + 3*5^(n) - 5), c) 14 | (3^(4n+2) + 5^(2n+1) [Note that 3^(4n+2) + 5^(2n+1) = 9^(2n)*9 + 5^(2n)*5 ≡ (-5)^(2n) * 9 + 5^(2n) *5 ≡ 0 mod 14]
Prove that if n is greater than or equal to 4 then the center of the...
Prove that if n is greater than or equal to 4 then the center of the alternating subgroup An is the trivial subgroup. What is Z(An) for n = 0,1,2,3 ?
Prove that 3 divides n^3 −n for all n ≥ 1.
Prove that 3 divides n^3 −n for all n ≥ 1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT