In: Statistics and Probability
a) The rate for the first is lambda and for the second is mu, so the probability that the first occurs first is lambda/(lambda+mu)
b) The probability that the second occurs first the first 3 times, given the memoryless nature of the process, is (mu/(lambda+mu))^3
c) Each interval, the expected time until the next event is 1/(lambda + mu)
The probability that it is the first component failing in any interval is lambda/(lambda+mu)
In the n'th interval, either component failing leads to failure.
Thus, the probability of failure in the i'th interval, i < n, is, (as for i-1 intervals, the second component had to fail), (mu/(lambda+mu))^i-1 * lambda/(lambda+mu)
Thus, we have the sum i=1 to n-1 i/(lambda+mu)*(mu/(lambda+mu))^i-1 * lambda/(lambda+mu) +n*(mu/(lambda+mu))^n-1/(lambda+mu)
To calculate the sum i=1 to n-1 i/(lambda+mu)*(mu/(lambda+mu))^i-1 * lambda/(lambda+mu), calculate this as
sum i=1 to inf i/(lambda+mu)*(mu/(lambda+mu))^i-1 * lambda/(lambda+mu) -
sum i=n to inf i/(lambda+mu)*(mu/(lambda+mu))^i-1 * lambda/(lambda+mu)
The first sum is (consider this as the mean of the geometric distribution with parameter lambda/(lambda+mu) * 1/(lambda+mu)
1/(lambda/(lambda+mu)) * 1/(lambda+mu) = 1/lambda
sum i=n to inf i/(lambda+mu)*(mu/(lambda+mu))^i-1 * lambda/(lambda+mu)
Note that this is the geometric progression after n-1 intervals, so the expected value of the geometric, conditioned on reaching this, is n-1 + 1/(lambda/(lambda+mu))
Thus, we multiply this times (mu/(lambda+mu))^n-1*1/(lambda+mu)
Thus, the expected time is 1/lambda -
(n-1 + 1/(lambda/(lambda+mu)))*(mu/(lambda+mu))^n-1*1/(lambda+mu) +
n*(mu/(lambda+mu))^n-1/(lambda+mu) = (noting that the n terms cancel each other and remembering that we are subtracting the one term)
1/lambda + (mu/(lambda+mu))^n-1*1/(lambda+mu) -1/lambda*(mu/(lambda+mu))^n-1 or
1/lambda + (mu/(lambda+mu))^n-1 * (1/(lambda+mu) -1/lambda))
As a check, note that, when n = 1, this becomes
1/lambda + 1/(lambda+mu) - 1/lambda = 1/(lambda+mu), which is this answer