In: Math
Solution :
Given that ,
mean = = 550 ml
standard deviation = = 7 ml
n = 100
6) P(x 548) = 1 - P(x 548)
= 1 - P[(x - ) / (548 - 550) / 7]
= 1 - P(z -0.29)
Using z table,
= 1 - 0.3859
= 0.6141
7) Using standard normal table,
P(Z > z) = 70%
= 1 - P(Z < z) = 0.70
= P(Z < z) = 1 - 0.70
= P(Z < z ) = 0.30
= P(Z < -0.52) = 0.30
z = - 0.52
Using z-score formula,
x = z * +
x = -0.52 * 7 + 550
x = 546.36 ml