In: Statistics and Probability
For 300 trading days, the daily closing price of a stock (in $) is well modeled by a Normal model with mean $195.61 and standard deviation $7.15. According to this model, what cutoff value of price would separate the
a) lowest 11% of the days?
b) highest 0.86%?
c) middle 58%?
d) highest 50%?
Let's consider X be the daily closing price of a stock.
Therefore,

a) The cutoff value of price would separate the lowest 11% of the days is given by



### by using z table, we find inverse distribution function.




Therefore the cutoff value for price is 204.4045
b) The cutoff value of price would separate the highest 0.86% is obtained by





By using z table




c) The cutoff value for middle 58% is obtained by

That is



By using z table




also





By using z table




Therefore the cutoff values are 182.168 and 199.5425
d) The cutoff value of price that would separate highest 50% is 195.61
Since X is normally distributed, 50% of score lies below the mean.