Question

In: Statistics and Probability

For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...

For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$196.59

and standard deviation $7.16.

According to this​ model, what cutoff value of price would separate the

​a) lowest 14​% of the​ days?

​b) highest 0.42​%?

​c) middle 63​%?

​d) highest 50​%?

Solutions

Expert Solution

Solution :

mean = = 196.59

standard deviation = = 7.16

Using standard normal table,

(a)

P(Z < z) = 14%

P(Z < -1.08) = 0.14

z = -1.08

Using z-score formula,

x = z * +

x = -1.08 * 7.16 + 196.59 = 188.86

Cuttoff = 188.86

(b)

P(Z > z) = 0.42%

1 - P(Z <z) = 0.0042

P(Z < z) = 1 - 0.0042 = 0.9958

P(Z < 2.64) = 0.9958

z = 2.64

Using z-score formula,

x = z * +

x = 2.64 * 7.16 + 196.59 = 215.49

Cuttoff = 215.49

c)

1 - 63% = 37%

37% / 2 = 16.5%

P(Z < z) = 0.165

P(Z < -0.97) = 0.165

z = -0.97

Using z-score formula,

x = z * +

x = -0.97 * 7.16 + 196.59 = 189.72

P(Z > z) = 0.165

1 - P(Z < z) = 0.165

P(Z < z) = 1 - 0.165 = 0.835

P(Z < 0.97) = 0.835

z = 0.97

Using z-score formula,

x = z * +

x = 0.97 * 7.16 + 196.59 = 203.46

Cutoff = 189.72 and 203.46

d)

P(Z > z) = 50%

1 - P(Z < z) = 0.50

P(Z < z) = 1 - 0.50 = 0.50

P(Z < 0) = 0.50

z = 0

Using z-score formula,

x = z * +

x = 0 * 7.16 + 196.59 = 196.59

Cutoff = 196.59


Related Solutions

For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$196.55 and standard deviation ​$7.17. According to this​ model, what cutoff value of price would separate the ​ a) lowest 17​% of the​ days? ​ b) highest 0.78​%? ​ c) middle 61​%? ​ d) highest 50​%?
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$196.59 and standard deviation ​$7.14 According to this​ model, what is the probability that on a randomly selected day in this period the stock price closed as follows. ​a) above ​$203.73? ​b) below ​$210.87? ​c) between ​$182.31 and ​$210.87 ​d) Which would be more​ unusual, a day on which the stock price closed above ​$210 or below ​$190
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$195.61 and standard deviation ​$7.15. According to this​ model, what cutoff value of price would separate the a) lowest 11​% of the​ days? ​b) highest 0.86​%? ​c) middle 58​%? ​d) highest 50​%?
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$197.89 and standard deviation ​$7.17. According to this​ model, what is the probability that on a randomly selected day in this period the stock price closed as follows. ​a) above ​$205.06​? ​b) below ​$212.23​? ​c) between ​$183.55 and ​$212.23​? ​d) Which would be more​ unusual, a day on which the stock price closed above ​$210 or below ​$180​?
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$197.38 and standard deviation ​$7.16 According to this​ model, what cutoff value of price would separate the ​a) lowest 13% of the​ days? ​b) highest 0.62%? ​c) middle 79​%? ​d) highest 50​%? Select the correct answer below and fill in the answer​ box(es) within your choice. A.The cutoff points are nothing and nothing. ​(Use ascending order. Round to...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$196.38 and standard deviation $7.13. According to this ​model, what is the probability that on a randomly selected day in this period the stock price closed as follows. ​a) above ​$203.51? ​b) below ​$210.64​? ​c) between ​$182.12 and ​$210.64? ​d) Which would be more​ unusual, a day on which the stock price closed above ​$206 or below ​$180?
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean $195.89 and standard deviation ​$7.18 According to this​ model, what cutoff value of price would separate the ​a) lowest 15% of the​ days? ​b) highest 0.61​%? ​c) middle 80​%? ​d) highest 50​%? c) Select the correct answer below and fill in the answer​ box(es) within your choice. A.The cutoff points are _________ and _________. ​(Use ascending order. Round...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with mean ​$197.49197.49 and standard deviation ​$7.147.14. According to this​ model, what is the probability that on a randomly selected day in this period the stock price closed as follows. ​ a) above ​$211.77211.77​? ​b) below ​$204.63204.63​? ​ c) between ​$183.21183.21 and ​$211.77211.77​? ​d) Which would be more​ unusual, a day on which the stock price closed above ​$210210 or...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled...
For 300 trading​ days, the daily closing price of a stock​ (in $) is well modeled by a Normal model with a mean of ​$197.12197.12 and a standard deviation of ​$7.187.18. According to this​ model, what is the probability that on a randomly selected day in this​ period, the stock price closed as follows. ​a) above ​$204.30204.30​? ​b) below ​$211.48211.48​? ​c) between ​$182.76182.76 and ​$211.48211.48​?
The following are closing prices of Google stock for a sample of trading days. Use the...
The following are closing prices of Google stock for a sample of trading days. Use the 1-Var Stats command in the TI-84 PLUS calculator to compute the sample standard deviation. 455.21 , 482.37, 483.19, 459.63, 497.99, 475.10, 472.08, 444.95, 489.22 Write only a number as your answer. Round to two decimal places (for example 8.32). Your Answer:
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT