Question

In: Physics

Two large, flat metal plates are parallel to each other, a distance d apart. A charge...

Two large, flat metal plates are parallel to each other, a distance d apart. A charge of Q is placed on them and then they are electrically isolated. As a result, at the midpoint between the two plates the electric field has magnitude E. If the separation of the plates is then reduced to d/2 what is the magnitude of the electric field at the midpoint?

A) 2E

B) E/2

C) 0

D) 4E

E) E

Solutions

Expert Solution

(1)(2)

I have taken:1)the surface area of the plate =A up

2)the dielectric constant of the medium=epsilon

To cover all the charges on the plate the maximum surface area it the Gaussian surface will be A.

The pages are arranged serially


Related Solutions

12-9 Two large parallel plane conducting plates are a distance d apart. The region between them...
12-9 Two large parallel plane conducting plates are a distance d apart. The region between them is filled with two l.i.h. materials whose surface of separation is a plane parallel to the plates. The first material (with properties σ1 and Ɛ1) is of thickness x, while the second material (σ2, Ɛ2) has thickness d - x. There is a steady current between the plates that are kept at constant potentials of φ1 and φ2. Find the potential at the surface...
Two large thin metal plates are parallel and close to each other as in figure shown...
Two large thin metal plates are parallel and close to each other as in figure shown above. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 7 * 10-22 C/m2. The negatively charged plate is on the left and the positively charged plate is on the right. What are the magnitude and direction of the electric field E (a) to the left of the plates? » Direction: ? Straight out of the computer...
Two large, thin, metal plates of 0.5mx0.5m face each other. They are spaced 2cm apart and...
Two large, thin, metal plates of 0.5mx0.5m face each other. They are spaced 2cm apart and have equal but opposite charges on their inner surfaces. a) if the magnitude E of the electric field between the plates is 700 N/C what is the magnitude of the charge on each plate? b) Integrate E across the gap between the plates to find the potential difference V and hence the capacitance C. c) Recalculate C using the parallel plate capacitator formula instead....
Two parallel, metal plates with separation distance d = 1.00 cm carry charges of equal magnitude...
Two parallel, metal plates with separation distance d = 1.00 cm carry charges of equal magnitude but opposite sign. The plates are oriented horizontally. Assume the electric field between the plates is uniform, and it has a magnitude of 1,880 N/C. A charged particle with mass 2.00 ✕ 10−16 kg and charge 1.07 ✕ 10−6 C is projected from the center of the bottom negative plate with an initial speed of 1.08 ✕ 105 m/s at an angle of 37.0°...
Consider two oppositely charged, isolated parallel plates separated by distance D, with capacitance C, charge Q,...
Consider two oppositely charged, isolated parallel plates separated by distance D, with capacitance C, charge Q, and stored energy U. D is small compared to the dimensions of the plates. For each statement below, select "True" or "False". 1. Because of energy conservation, inserting a dielectric leaves U unchanged. 2. When D is halved, Q stays the same. 3. Inserting a dielectric decreases C. 4. When D is doubled, U increases. 5. When D is doubled, C is doubled. 6....
Two thin square flat sheets are placed parallel to each other. The distance between the sheets...
Two thin square flat sheets are placed parallel to each other. The distance between the sheets is much smaller than the size of each sheet, so we can consider the sheets infinite. The sheets are uniformly charged, with surface charge densities σ1 and σ2, respectively. The magnitudes and the signs of these charge densities are not known. To determine σ1 and σ2, you measure the electric force on a test point charge q = 2.00 nC at several locations. You...
Two large parallel copper plates are 3.60 cm apart and have a uniform electric field of...
Two large parallel copper plates are 3.60 cm apart and have a uniform electric field of magnitude E = 7.98 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other.
Consider the steady flow between two flat plates. The plates are 10 cm apart and the...
Consider the steady flow between two flat plates. The plates are 10 cm apart and the width of the channel is 10 cm. Water is the working fluid. The flow velocity varies linearly from zero at the bottom plate to 10 m/s at the top plate. (This general class of flows is known as Couette Flow). Determine the total mass flow and momentum per unit time crossing an imaginary plane across the channel.
Consider two-dimensional incompressible plane viscous flow between parallel plates a distance 2h apart, with the origin...
Consider two-dimensional incompressible plane viscous flow between parallel plates a distance 2h apart, with the origin along the centerline. The plates are very wide and very long, so that the flow is essentially axial. The present case is where the upper plate moves at velocity V but there is no pressure gradient. Neglect gravity effects. Determine the velocity profile for this flow.
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d =...
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d = 0.2 m. There is vacuum between the plates. The voltage difference between the plates is 150 V. The capacitance of the plates is 3 μF. a) (6 pts) Find the magnitude of the electric field between the plates (ignoring edge effects). b) (12 pts) An alpha particle, which is doubly ionized helium, He2+ (charge = 2e where e is the elementary charge, mass =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT