Question

In: Chemistry

The normal freezing point of camphor is 176◦C. When 0.220 mol of a certain solute is...

The normal freezing point of camphor is 176◦C. When 0.220 mol of a certain solute is dissolved in 10 kg of camphor (Kf = 37.8 ◦C/m), the freezing point is decreased to 173.50◦C. What is the identity of the solute?

1. Ba3(AsO3)2 2. KBr
3. sugar
4. Na3PO4

5. CaBr2

Solutions

Expert Solution


Related Solutions

Camphor (C10H16O) has a normal melting point of 179.8 oC, with a molal freezing point depression...
Camphor (C10H16O) has a normal melting point of 179.8 oC, with a molal freezing point depression constant of 40.0 oC/m. When 224.0 mg of an unknown organic material was dissolved in 26.74 g of pure camphor, the freezing point of the solution (P = 1 atm) was 174.5 oC. What is the molar mass (g/mol) of the material? ΔTf = iKfm. a) 45.31 b) 194.2 c) 223.4 d) 96.42 e) 135.2 f) 63.22
How is a solution freezing point and boiling point affected by addition of a dissolved solute?
How is a solution freezing point and boiling point affected by addition of a dissolved solute?
Camphor has a melting point of 178.4℃ and a Kf of 37.7℃/m. If 0.550 g of an unknown nonelectrolyte lowered the freezing point of 35.0 g of camphor by 2.00℃
  A) Camphor has a melting point of 178.4℃ and a Kf of 37.7℃/m. If 0.550 g of an unknown nonelectrolyte lowered the freezing point of 35.0 g of camphor by 2.00℃, what was the molar mass of the unknown? B) When 1.00 g of hemoglobin is dissolved in enough water to form 100mL of solution, the osmotic pressure at 20℃ is 3.62x10-3 atm. What is the molar mass of the protein, hemoglobin?
The freezing point of benzene is 5.5°C. What is the freezing point of a solution of...
The freezing point of benzene is 5.5°C. What is the freezing point of a solution of 2.80 g of naphthalene (C10H8) in 355 g of benzene (Kf of benzene = 4.90°C/m)? Please answer in how many degrees of Celcius
Calculate the freezing point and boiling point in each solution,assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. A. Calculate the freezing point of a solution containing 10.7 g FeCl3 in 164 g water. B. Calculate the boiling point of the solution above C. Calculate the freezing point of a solution containing 3.7 % KCl by mass (in water). D. Calculate the boiling point of the solution above.  
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. 1) Calculate the freezing point of a solution containing 10.6 g FeCl3 in 151 g water. 2) Calculate the boiling point of a solution above. 3) Calculate the freezing point of a solution containing 6.2% KCl by mass (in water). Express your answer using two significant figures. 4) Calculate the boiling point of a solution above 5) Calculate the freezing point of a solution...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a.Calculate the freezing point of a solution containing 13.0 g FeCl3 in 164 g water. b.Calculate the boiling point of a solution above. c.Calculate the freezing point of a solution containing 3.9 % KCl by mass (in water). Express your answer using two significant figures. d.Calculate the boiling point of a solution above. e.Calculate the freezing point of a solution containing 0.162 m MgF2....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a) Calculate the freezing point of a solution containing 12.2 g FeCl3 in 158 g water. b) Calculate the boiling point of a solution above. c) Calculate the freezing point of a solution containing 4.5 % KCl by mass (in water). d) Calculate the boiling point of a solution above. e) Calculate the freezing point of a solution containing 0.170 m MgF2. f) Calculate...
In order to determine the molar mass of an unknown solute by measuring the freezing point...
In order to determine the molar mass of an unknown solute by measuring the freezing point depression of a solution of this unknown solute in a solvent as compared to the freezing point of the pure solvent (distilled water), we immersed a test tube with ~20ml of solute + distilled water in a ice-salt water bath, in addition to a test tube of ~20ml of pure distilled water (in a different ice-salt water bath) and recorded the temperature every 30...
1) The change in Freezing Point of a solution is due to presence of solute(s). The...
1) The change in Freezing Point of a solution is due to presence of solute(s). The more solute is dissolved in the solution, the lower is its freezing point Select one: True False 2) What volume (in L) of a 1.38 M solution of KOH would be needed to prepare 348 mL of a 0.681 M solution? 3) The vapor pressure of a solution is indeed lower that the vapor pressure of the pure solvent. The reason is in part...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT