Question

In: Physics

In searching the bottom of a pool at night, a watchman shines a narrow beam of light from his flashlight

In searching the bottom of a pool at night, a watchman shines a narrow beam of light from his flashlight, 1.3 m above the water level, onto the surface of the water at a point d = 2.6 m from his foot at the edge of the pool (Figure 1). 

image.png

Part A 

Where does the spot of light hit the bottom of the h = 2.1-m-deep pool? Measure from the bottom of the wall beneath his foot. Express your answer to two significant figures and include the appropriate units. 

Solutions

Expert Solution


Related Solutions

A beam of light from a monochromatic laser shines into a piece of glass. The glass...
A beam of light from a monochromatic laser shines into a piece of glass. The glass has thickness L and index of refraction n=1.5 . The wavelength of the laser light in vacuum is L/10 and its frequency is f In this problem, neither the constant c nor its numerical value should appear in any of your answers. (1)How long does it take for a short pulse of light to travel from one end of the glass to the other?
A scientist shines a beam of white light through a diffraction grating (with 500linesmm), producing a...
A scientist shines a beam of white light through a diffraction grating (with 500linesmm), producing a diffraction pattern. The spectrometer only looks at the m=1 bright spot! (The m=2 spectrum will not fit in the view.) a) Calculate the distance d between individual slits (also called “lines”). b) The white light spreads into its component colors. For red light (=700nm), what is the diffraction angle θR (in degrees)? c) For violet light (=400nm), what is the diffraction angle θV (in...
A narrow beam of light containing red (660 nm) and yellow (580 nm) wavelengths goes from...
A narrow beam of light containing red (660 nm) and yellow (580 nm) wavelengths goes from polystyrene to air, striking the surface at a 34.5° incident angle. What is the angle (in degrees) between the colors when they emerge? ° (b) How far would they have to travel (in m) to be separated by 1.00 mm? m
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.57 ✕ 10−5 m and an interference pattern is observed on a screen 2.10 m from the plane of the slits. 1. find angle from central maximum to first bright fringe 2. at what angle from central maximum does the second dark fringe appear? 3. find the distance (in m) from the central maximum to the first bright fringe.
a. mention and explain the characteristics of the laser beam that distinguishes it from general light...
a. mention and explain the characteristics of the laser beam that distinguishes it from general light b. write a summary of the working principles of the laser according to the assignment about the laser you have made
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits....
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.3m behind the slits. Eleven bright fringes are seen, spanning a distance of 54mm . What is the spacing (in mm) between the slits?
Consider a beam of light passing from air into glass (refractive index 1.5) at an angle...
Consider a beam of light passing from air into glass (refractive index 1.5) at an angle of 30 degrees from vertical. Calculate - The angle of the reflected light - The angle of the refracted light - The intensity of the reflected light - The intensity of the refracted light
Consider Fraunhofer diffraction of coherent light (e.g., a laser beam) from a double slit. Use Matlab...
Consider Fraunhofer diffraction of coherent light (e.g., a laser beam) from a double slit. Use Matlab (or some other program) to calculate and plot the diffraction pattern you would expect from two slits, each 0.230 mm wide, with a center-to-center separation of 0.853 mm, on a screen that is 62.3 cm downstream of the slit, when illuminated by a helium-neon laser (??=633 nm). Turn in a printout of your plot – which should have properly labeled axes, etc., of course!
A beam of light containing red (660 nm) and violet (410 nm) wavelengths travels from air,...
A beam of light containing red (660 nm) and violet (410 nm) wavelengths travels from air, through a flat piece of crown glass 1.92 cm thick, and then back to air. (a) If the beam has an angle of incidence of 36.0° in air, determine the angle at which the two colors of light emerge from the crown glass. The index of refraction respectively for red and violet light in crown glass is 1.512 and 1.530. (Enter a number to...
One night Johnny accepts a lift to work from one of his chefs, Sam, who has...
One night Johnny accepts a lift to work from one of his chefs, Sam, who has had his driving licence for only two weeks. On the way to work it starts raining heavily and Sam appears to have trouble keeping his vehicle on the road. Johnny asks Sam to slow down, but he continues driving at the speed limit. Shortly afterwards, Sam loses control of the vehicle and hits a telegraph pole. Both Johnny and Sam are injured. If Johnny...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT