Question

In: Chemistry

The data shown below were collected for the following second-order reaction: Cl(g)+H2(g)→HCl(g)+H(g)Cl(g)+H2(g)→HCl(g)+H(g) Temperature (K)(K) Rate Constant...

The data shown below were collected for the following second-order reaction:
Cl(g)+H2(g)→HCl(g)+H(g)Cl(g)+H2(g)→HCl(g)+H(g)

Temperature (K)(K) Rate Constant (L/mol⋅s)(L/mol⋅s)
90 0.00357
100 0.0773
110 0.956
120 7.781

A)Use an Arrhenius plot to determine the activation barrier for the reaction

B)Use an Arrhenius plot to determine the frequency factor for the reaction.

Solutions

Expert Solution


Related Solutions

Part A Consider the second-order reaction: 2HI(g)→H2(g)+I2(g) Rate law: k[H]^2 k= 6.4*10^-9 (mol*s) at 500 K...
Part A Consider the second-order reaction: 2HI(g)→H2(g)+I2(g) Rate law: k[H]^2 k= 6.4*10^-9 (mol*s) at 500 K Initial rate = 1.6 * 10^-7 mol (l*s) What will be the concentration of HI after t = 3.65×1010 s ([HI]t) for a reaction starting under this condition? Part B In a study of the decomposition of the compound X via the reaction X(g)⇌Y(g)+Z(g) the following concentration-time data were collected: Time (min) [X](M) 0 0.467 1 0.267 2 0.187 3 0.144 4 0.117 5...
For the elementary gas phase reaction H+C2H4 ®C2H5, the second-order rate constant varies with temperature in...
For the elementary gas phase reaction H+C2H4 ®C2H5, the second-order rate constant varies with temperature in the following way: T / K                                       198      298      400      511      604 1012 k/(cm3molecule-1s-1)       0.20     1.13     2.83     4.27     7.69 a) Use the data to calculate the activation energy, Ea, and the pre-exponential factor, A, for the reaction. b) The simple collision theory of bimolecular reactions yields the following expression for the rate constant: k = (8kT/p m)1/2 sexp(-Ea/RT) where mis the reduced mass of the reactants and s is the reaction cross section. i) Interpret...
The equilibrium constant (Kp) for the reaction below is 4.40 at 2000. K. H2(g) + CO2(g)...
The equilibrium constant (Kp) for the reaction below is 4.40 at 2000. K. H2(g) + CO2(g) ⇌ H2O(g) + CO(g) Calculate Δ G o for the reaction. kJ/mol Calculate Δ G for the reaction when the partial pressures are PH2 = 0.22 atm, PCO2 = 0.72 atm, PH2O = 0.66 atm, and PCO = 1.16 atm.
The gas phase reaction H2 + I2 --> 2HI is second order. Its rate constant at...
The gas phase reaction H2 + I2 --> 2HI is second order. Its rate constant at 400 C is 0.0243 dm3/mol s. Calculate delta H, delta S, delta G and the pre-exponential at this temperature. Assume that delta H is constant over this temperature range.
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----->H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----->H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI, 4.32×10-2 M H2 and 4.32×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.12×10-2 mol of I2(g) is added to the flask? [HI] = M [H2] = M [I2] = M
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----><H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----><H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.307 M HI,   4.13×10-2 M H2 and 4.13×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.173 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) →...
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K. Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K A. 3.07 × 1011 B.13.0 C. 3.26 × 10-12 D. 3.99 × 1012 E. 2.51 × 10-13
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) ?...
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) ? CH3NH2(g); ?H
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) →...
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K
Determine the equilibrium constant for the following reaction at 549 K. CH2O(g) + 2 H2(g) →...
Determine the equilibrium constant for the following reaction at 549 K. CH2O(g) + 2 H2(g) → CH4(g) + H2O(g) ΔH° = -94.9 kJ; ΔS°= -224.2 J/K.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT