Question

In: Mechanical Engineering

An intermediate pressure steam turbine is to be designed with 7 repeating stages as described above....

An intermediate pressure steam turbine is to be designed with 7 repeating stages as described above. The inlet conditions are: total temperature = 550°, total pressure = 4.0 MN/m2. The exit total pressure is 0.5 MN/m2. The rotational speed of the turbine is to be 1500 rev/min and the power output required is 90 MW. It is estimated that the turbine efficiency will be 90%. Calculate the mass flow through the turbine, the axial velocity, mean blade speed and the mean diameter of the turbine.

Solutions

Expert Solution


Related Solutions

The temperature and pressure of the steam at the inlet of a high pressure turbine is...
The temperature and pressure of the steam at the inlet of a high pressure turbine is 500 ° C, respectively. It is 12 MPa and 300 ° C and 3MPa at its outlet. If the mass flow of steam is 400 kg / h, how much is the isentropic efficiency of the turbine?
Estimate the number for stages required for the turbine which is a multi-stage axial turbine designed...
Estimate the number for stages required for the turbine which is a multi-stage axial turbine designed with impulse stages and operating with an inlet pressure and temperature of 6 bar and 900 K and outlet pressure of 1 bar. The isentropic efficiency of the turbine is 85 %. All the stages are to have a nozzle outlet angle of 75 degrees and equal inlet and outlet rotor blade angles. Mean blade speed is 250 m/s and the axial velocity is...
A multi-stage gas turbine is to be designed with impulse stages, and is to operate with...
A multi-stage gas turbine is to be designed with impulse stages, and is to operate with an inlet pressure and temperature of 6 bar and 900 K, and an outlet pressure of 1 bar. The isentropic efficiency of the turbine is likely to be 85 per cent. All the stages are to have a nozzle outlet angle of 15 degrees, equal inlet and outlet blade angles, a mean blade speed of 250 m/s and equal 5 kJ/kg K o inlet...
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat...
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500°C and leaves as saturated vapor. Steam is then reheated to 400°C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6*104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7°C. Show the...
Steam expands in a thermally isolated turbine steadily. The inlet pressure is 1MPa and temperature is...
Steam expands in a thermally isolated turbine steadily. The inlet pressure is 1MPa and temperature is 800 C, and the exit state is 300 kPA and 150 C. a- Determine the power generated by the turbine per unit mass flow rate of steam. b- Evaluate the entropy generation rate per unit mass flow rate of steam and drive a conclusion whether the turbine operates reversibly, irreversibly or the operation is impossible.
Superheated steam at 20 MPa, 640°C enters the turbine of a vapor power plant. The pressure...
Superheated steam at 20 MPa, 640°C enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.5 bar, and liquid leaves the condenser at 0.4 bar at 75°C. The pressure is increased to 20.1 MPa across the pump. The turbine and pump have isentropic efficiencies of 81 and 85%, respectively. Cooling water enters the condenser at 20°C with a mass flow rate of 70.7 kg/s and exits the condenser at 38°C. For the...
In an intermediate superheated steam cycle, water vapor is 4 MPa pressure, 440 oC high, isentropic...
In an intermediate superheated steam cycle, water vapor is 4 MPa pressure, 440 oC high, isentropic and 0.80 high After entering the pressure turbine, it expands to 0.4 MPa and the intermediate superheater is again up to 440 oC. it is heated and enters the low pressure turbine, whose isentropic efficiency is also 0.80. 40 oC from condenser The fluid that works as a saturated liquid at temperature is pressed into the boiler with a pump with an isentropic efficiency...
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7....
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7. Air enters the compressor at 300 K. The energy in the form of heat is transferred to the air in the amount of 950 kJ/kg. Using a variable specific heat for air and assuming the compressor isentropic efficiency is 83 percent and turbine isentropic efficiency is 85 percent. Determine the followings: (i) The highest temperature in the cycle [5 marks] (ii) The net work...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT