Question

In: Physics

A solid sphere of charge is centered at the origin and has radius R = 10...

A solid sphere of charge is centered at the origin and has radius R = 10 cm. Instead of being uniformly charged, the charge density varies with radial position: ρ(r)=ρ0ar. Take a=5.1 m and ρ0=3.7 C/m3. What is the total charge of the sphere? What is the electric flux through a sherical surface of radius R/2 that is concentric with the charged sphere? What is the flux through a spherical surface of radius 2R that surrounds the charged sphere, but is not concentric with it?

Solutions

Expert Solution


Related Solutions

A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform charge density ρ0, and the “southern” hemisphere a uniform charge density −ρ0. Find the approximate field E(r,θ) for points far from the sphere (r ≫ R). P.S. Please be as neat as possible.
A solid is bounded by the sphere centered at the origin of radius 5 and the...
A solid is bounded by the sphere centered at the origin of radius 5 and the infinite cylinder along the z-axis of radius 3. (a) Write inequalities that describe the solid in Cartesian coordinates. (b) Write inequalities that describe the solid in cylindrical coordinates. (c) Why is this solid difficult to describe in spherical coordinates? Which of the variables ρ, θ, φ are difficult to describe? Explain.
A ring of charge with radius R = 2.5 m is centered on the origin in...
A ring of charge with radius R = 2.5 m is centered on the origin in the x-y plane. A positive point charge is located at the following coordinates: x = 17.1 m y = 3.8 m z = -16.3 m The point charge and the total charge on the ring are the same, Q = +81 C. Find the net electric field along the z-axis at z = 4.5 m. Enet,x = Enet,y = Enet,z =
A solid insulating sphere of radius R has a charge of Q, (Q > 0) placed...
A solid insulating sphere of radius R has a charge of Q, (Q > 0) placed on it, uniformly distributed throughout its volume. Surrounding the sphere is a spherical conducting shell with inner radius 2R and outer radius 3R and has a charge of −2Q placed on it. The sphere and the shell share the same center. 1A: Determine the magnitude of the electric field, E(r), where r is the distance from the center of the sphere 1B: Determine the...
A solid nonconducting sphere of radius R = 5.5 cm has a nonuniform charge distribution of...
A solid nonconducting sphere of radius R = 5.5 cm has a nonuniform charge distribution of volume charge density ρ = (15.4 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R?
A solid nonconducting sphere of radius R = 5.7 cm has a nonuniform charge distribution of...
A solid nonconducting sphere of radius R = 5.7 cm has a nonuniform charge distribution of volume charge density ρ = (14.4 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R?
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A solid sphere of radius R is found at the origin. Point mass particles m have...
A solid sphere of radius R is found at the origin. Point mass particles m have elastic collisions with the sphere. Find a relationship between the (scattering) angle and the impact parameter to calculate the differential (cross-section) and the total differential.
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r,...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r, and a hollow cylinder of radius r are all allowed to roll down an incline. Derive a general relationship for the linear acceleration of each object depending on the angle of the ramp and the rotational inertia. You may assume that the frictional force is small enough that it is only causing rotation in each case.
Let S ∈ R3 be the sphere of radius 1 centered on the origin. a) Prove...
Let S ∈ R3 be the sphere of radius 1 centered on the origin. a) Prove that there is at least one point of S at which the value of the x + y + z is the largest possible. b) Determine the point (s) whose existence was proved in the previous point, as well as the corresponding value of x + y + z.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT