Question

In: Chemistry

One atom of 202Hg has a mass of 201.970 644 amu. Calculate the nuclear binding energy...

One atom of 202Hg has a mass of 201.970 644 amu. Calculate the nuclear binding energy per atom and per nucleon of this nuclide. Note: The atomic mass includes the mass of the electrons also. The mass of a proton is 1.0072765 amu, the mass of a neutron is 1.0086649 amu and the mass of an electron is 0.0005486 amu.

Solutions

Expert Solution

Nuclear Binding Energy (N.B.E) is the energy to seperate a nuclues into its constituent protons and neutrons or amount of energy liberated. To calculate Nuclear Binding Energy (N.B.E) we have the given expression as given below :

Nuclear Binding Energy (N.B.E) = ∆m x 931 MeV

where ∆m = mass defect which is the amount of loss of mass in the construction of the atom ∆m = (A-Z) mn + Zmp + Zme - M

A = calculated atomic mass = 202 amu

Z = atomic number = 80

mn = mass of a neutron = 1.0086649 amu

mp = mass of a proton = 1.0072765 amu

me = mass of an electron = 0.0005486 amu

M = measured atomic mass =  201.970 644 amu

∆m = (202 - 80)*1.0086649 amu + 80*1.0072765 amu + 80*0.0005486 amu - 201.970 644 amu

∆m = 203. 6831258 amu - 201.970 644 amu

∆m = 1.7124818 amu

Nuclear Binding Energy (N.B.E) per atom = 1.7124818 x 931 MeV =1594 .32 MeV

and Nuclear Binding Energy (N.B.E) per nucleon , B = (N.B.E) / A = 1594 .32 MeV / 202 = 7.89 MeV

Nuclear Binding Energy (N.B.E) per nucleon is the property which measures the stability of a nucleus


Related Solutions

Calculate the nuclear binding energy per nucleon for 176Hf if its nuclear mass is 175.941 amu.
Calculate the nuclear binding energy per nucleon for 176Hf if its nuclear mass is 175.941 amu.
Calculate the binding energy per nucleon for an atom of 12C(11.996708 amu).
Calculate the binding energy per nucleon for an atom of 12C(11.996708 amu).
If the nuclear binding energy of an atom of Be-9 is 9.6979 x 10-12 J/atom, calculate...
If the nuclear binding energy of an atom of Be-9 is 9.6979 x 10-12 J/atom, calculate the atomic mass of the nuclide.
What is in the last effects, the nuclear binding energy per atom, and the binding energy...
What is in the last effects, the nuclear binding energy per atom, and the binding energy per nucleon for U-238? (Isotopic mass of U-238=238.05078 amu)
Calculate the nuclear binding energy (in joules) and the nuclear binding energy per nucleon of: 113...
Calculate the nuclear binding energy (in joules) and the nuclear binding energy per nucleon of: 113 Cd 48 ​ (112.904401 amu) (Round each final answer to 4 significant figures.) ______J _______J/nucleon
Part1. Calculate the nuclear binding energy (in J) and the nuclear binding energy per nucleon of...
Part1. Calculate the nuclear binding energy (in J) and the nuclear binding energy per nucleon of 241 Pu 94 (241.0568453 amu). Part 2. A freshly isolated sample of 90Y was found to have an activity of 8.2 × 105 disintegrations per minute at 1:00 p.m. on December 3, 2006. At 2:15 p.m. on December 17, 2006, its activity was measured again and found to be 2.2 × 104 disintegrations per minute. Calculate the half-life of 90Y.
Nuclear Binding Energy a)Calculate the mass defect of the helium nucleus 52He. The mass of neutral...
Nuclear Binding Energy a)Calculate the mass defect of the helium nucleus 52He. The mass of neutral 52He is given by MHe=5.012225amu. Express your answer in atomic mass units to four significant figures. b)Calculate the binding energy E of the helium nucleus 52He (1eV=1.602×10−19J). Express your answer in millions of electron volts to four significant figures. c)Calculate the binding energy per nucleon of the helium nucleus 52He. Express your answer in millions of electron volts to four significant figures.
Nuclear binding energy and fusion a) Using Einstein’s energy-mass equivalence, calculate the energy in MeV corresponding...
Nuclear binding energy and fusion a) Using Einstein’s energy-mass equivalence, calculate the energy in MeV corresponding to one atomic mass unit u. b) Now, consider the fusion process of a deuterium nucleus and a proton into a Helium-3 nucleus: 2 1H +1 1 H → 3 2He (i) Given the masses of the nuclei M( 2 1H) = 2.014102 u and M( 3 2He) = 3.016030 u, calculate the mass defects of the 2 1H and 3 2He nuclei in...
Nuclear binding energy Part D Calculate the mass defect of the helium nucleus 52He. The mass...
Nuclear binding energy Part D Calculate the mass defect of the helium nucleus 52He. The mass of neutral 52He is given by MHe=5.012225amu. Express your answer in atomic mass units to four significant figures.   amu   SubmitHintsMy AnswersGive UpReview Part Part E Calculate the binding energy E of the helium nucleus 52He (1eV=1.602×10−19J). Express your answer in millions of electron volts to four significant figures. E =   MeV   SubmitHintsMy AnswersGive UpReview Part Part F Calculate the binding energy per nucleon of...
What is the nuclear binding energy per nucleon of potassium-40? Particle Mass (amu) K-40 39.9632591 Neutron...
What is the nuclear binding energy per nucleon of potassium-40? Particle Mass (amu) K-40 39.9632591 Neutron 1.008701 Proton 1.007316 Electron 0.000549 (1 kg = 6.022 × 1026 amu; NA = 6.022 × 1023 mol–1; c = 2.99792458 × 108 m/s) 1.33 × 10–12 J/nucleon 5.33 × 10–11 J/nucleon 5.64 × 10–11 J/nucleon 1.41 × 10–12 J/nucleon 2.97 × 10–12 J/nucleon
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT