In: Advanced Math
For the function, supply a valid technology formula.
r(x) = 30 (1 + 1/3.8)^4x
30*(1 + 1/3.8)^(−4*x)
30*(1 + 1/3.8)^(4*x)
30*(1 + 1/3.8)*(4*x)
30*(1 + 3.8)*(4*x)
30*(1 + 3.8)^(−4*x)
x | −3 | −2 | −1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
r(x) |
Then use technology to compute the missing values in the table
accurate to four decimal places.
solution:-
THE TECHNOLOGY FORMULA IS:-
30*(1+1/3.8)^(4*x)
now we have to find out the values of r(x) for the given values of x using the above technology formula:-
detailed step wise calculation is given below:-
r(-3) = 30*(1+1/3.8)^(4*(-3)) = 30*(1+0.263157)^(-12) = 30*(1.263157)^(-12) = 30*(0.060638) = 1.8181
r(-2) = 30*(1+1/3.8)^(4*(-2)) = 30*(1+0.263157)^(-8) = 30*(1.263157)^(-8) = 30*(0.154291) = 4.6287
r(-1) = 30*(1+1/3.8)^(4*(-1)) = 30*(1+0.263157)^(-4) = 30*(1.263157)^(-4) = 30*(0.392799) = 11.7839
r(-0) = 30*(1+1/3.8)^(4*0) = 30*(1+0.263157)^(0) = 30*(1.263157)^(0) = 30*(1) = 30
r(1) = 30*(1+1/3.8)^(4*1) = 30*(1+0.263157)^(4) = 30*(1.263157)^(4) = 30*(2.545829) = 76.3751
r(2) = 30*(1+1/3.8)^(4*2) = 30*(1+0.263157)^(8) = 30*(1.263157)^(8) = 30*(6.481248) = 194.4385
r(3) = 30*(1+1/3.8)^(4*3) = 30*(1+0.263157)^(12) = 30*(1.263157)^(12) = 30*(16.500154) = 495.0088
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
r(x) | 1.8181 | 4.6287 | 11.7839 | 30 | 76.3751 | 194.4385 | 495.0088 |
NOTE:- the final values of value of r(x) are calculated using scientific calculator and are correct upto 4 decimal places.