In: Math
Solution :
Given that ,
mean = = 115
standard deviation = = 10
a) P(90 < x < 105) = P[(90 - 115)/ 10) < (x - ) / < (105 - 115) / 10) ]
= P(-2.5 < z < -1.00)
= P(z < -1.00) - P(z < -2.5)
Using z table,
= 0.1587 - 0.0062
= 0.1525
b) P(x > 130) = 1 - p( x< 130)
=1- p P[(x - ) / < (130 - 115) / 10]
=1- P(z <1.5 )
Using z table,
= 1 - 0.9332
= 0.0668
c) Using standard normal table,
P(Z > z) = 80%
= 1 - P(Z < z) = 0.80
= P(Z < z) = 1 - 0.80
= P(Z < z ) = 0.20
= P(Z < -0.8416 ) = 0.20
z = -0.8416
Using z-score formula,
x = z * +
x = -0.8416 * 10 + 115
x = 106.58