Question

In: Math

Companies X, Y and Z all manufacture a specific component required to make a touch screen...

Companies X, Y and Z all manufacture a specific component required to make a touch screen tablet. Of these three companies, X shipped 1024 components, Y shipped 512 and Z shipped 256. The percentage of defective components produces by each company is 4%, 5% and 14% for X, Y and Z, respectively. What is the probability that a given defective component came from Company Y?

Please enter your answer as a decimal with 3 significant digits, e.g., .250 or 0.250.

Solutions

Expert Solution


Related Solutions

What are (a) the x component, (b) the y component, and (c) the z component of...
What are (a) the x component, (b) the y component, and (c) the z component of r Overscript right-arrow EndScripts equals a Overscript right-arrow EndScripts minus b Overscript right-arrow EndScripts plus c Overscript right-arrow EndScripts if a Overscript right-arrow EndScripts equals 5.4 i Overscript ̂ EndScripts plus 1.9 j Overscript ̂ EndScripts minus 3.6 k Overscript ̂ EndScripts , b Overscript right-arrow EndScripts equals negative 4.1 i Overscript ̂ EndScripts plus 5.4 j Overscript ̂ EndScripts plus 3.7 k Overscript...
Suppose x,y ∈ R and assume that x < y. Show that for all z ∈...
Suppose x,y ∈ R and assume that x < y. Show that for all z ∈ (x,y), there exists α ∈ (0,1) so that αx+(1−α)y = z. Now, also prove that a set X ⊆ R is convex if and only if the set X satisfies the property that for all x,y ∈ X, with x < y, for all z ∈ (x,y), z ∈ X.
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
Describe the level surfaces of G(x,y, z) = 1 – y^2 – z. Make sure to...
Describe the level surfaces of G(x,y, z) = 1 – y^2 – z. Make sure to provide all the following: their equations, types, plots, and a short word description of their geometric shapes.
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z)...
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z) b. X×(Y×Z) = (X.Z)Y – (X.Y)Z c. X.(Y×Z) = -Y.(X×Z)
Digital Logic Simplify: F = (x’∙ y’∙ z’) + (x’∙ y ∙ z’) + (x ∙...
Digital Logic Simplify: F = (x’∙ y’∙ z’) + (x’∙ y ∙ z’) + (x ∙ y’ ∙ z’) + (x ∙ y ∙ z) F = (x + y + z’) (x + y’ + z’) (x’ + y + z’) (x’ + y’ + z)
Use two different ways to prove X Y + Z = (X + Z)(Y + Z)....
Use two different ways to prove X Y + Z = (X + Z)(Y + Z). a) Use pure algebraic way b) k-maps
For each of the formulas below, state whether it is true or false. a) pX,Y,Z(x,y,z)=pY(y)pZ∣Y(z∣y)pX∣Y,Z(x∣y,z)   ...
For each of the formulas below, state whether it is true or false. a) pX,Y,Z(x,y,z)=pY(y)pZ∣Y(z∣y)pX∣Y,Z(x∣y,z)       Select an option         True         False    b) pX,Y∣Z(x,y∣z)=pX(x)pY∣Z(y∣z)       Select an option         True         False    c) pX,Y∣Z(x,y∣z)=pX∣Z(x∣z)pY∣X,Z(y∣x,z)       Select an option         True         False    d) ∑xpX,Y∣Z(x,y∣z)=1       Select an option         True         False    e) ∑x∑ypX,Y∣Z(x,y∣z)=1       Select an option         True   ...
Find ??, ?? and ?? of F(x, y, z) = tan(x+y) + tan(y+z) – 1
Find ??, ?? and ?? of F(x, y, z) = tan(x+y) + tan(y+z) – 1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT