Question

In: Math

he weight of an organ in adult males has a​ bell-shaped distribution with a mean of...

he weight of an organ in adult males has a​ bell-shaped distribution with a mean of 320 grams and a standard deviation of 45 grams. Use the empirical rule to determine the following. ​

(a) About 99.7​% of organs will be between what​ weights?

​(b) What percentage of organs weighs between 230 grams and 410 ​grams? ​

(c) What percentage of organs weighs less than 230 grams or more than 410 ​grams? ​

(d) What percentage of organs weighs between 275 grams and 455 ​grams?

Solutions

Expert Solution

Given information:

(a)

According to empirical rule, 99.7% data values lies within 3 standard deviations of mean. So required range is

Answer: (185, 455)

(b)

From given information we have

According to empirical rule, 95% data values lies within 2 standard deviations of mean. That is 95% data values lie between (230, 410).

Answer: 95%

(c)

By the complement rule, percentage of organs weights less than 230 grams or more than 410 grams is

100% - 95% = 5%

Answer: 5%

(d)

We have

According to empirical rule, 68% data values lies within 1 standard deviation of mean.

The percentage of weight between 275 and 320 is

68% /2 = 34%

And

so percentage of weight between 320 and 455 is

So required percentage is

34% + 49.85% = 83.85%

Answer: 83.85%


Related Solutions

he weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
he weight of an organ in adult males has a​ bell-shaped distribution with a mean of 320 grams and a standard deviation of 30 grams. Use the empirical rule to determine the following. ​(a) About 68​% of organs will be between what​ weights? ​(b) What percentage of organs weighs between 230 grams and 410 ​grams? ​(c) What percentage of organs weighs less than 230 grams or more than 410 ​grams? ​(d) What percentage of organs weighs between 260 grams and...
The weight of an organ in adult males has a bell-shaped distribution with a mean of...
The weight of an organ in adult males has a bell-shaped distribution with a mean of 300 grams and a standard deviation of 45 grams. Use the empirical rule to determine the following. (a) About 68% of organs will be between what weights? (b) What percentage of organs weighs between 165 grams and 435 grams? (c) What percentage of organs weighs less than 165 grams or more than 435 grams? (d) What percentage of organs weighs between 255 grams and...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 350 grams and a standard deviation of 35 grams. Use the empirical rule to determine the following. ​(a) About 99.7 of organs will be between what​ weights? ​(b) What percentage of organs weighs between 280 grams and 420 ​grams? ​(c) What percentage of organs weighs less than 280 grams or more than 420 ​grams? ​(d) What percentage of organs weighs between 245 grams and...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 320 grams and a standard deviation of 15 grams. Use the empirical rule to determine the following. ​(a) About 95​% of organs will be between what​ weights? ​(b) What percentage of organs weighs between 305 grams and 335 ​grams? ​(c) What percentage of organs weighs less than 305 grams or more than 335 ​grams? ​(d) What percentage of organs weighs between 290 grams and...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 330 grams and a standard deviation of 20 grams. Use the empirical rule to determine the following. ​(a) About 95​% of organs will be between what​ weights? ​(b) What percentage of organs weighs between 270 grams and 390 grams? ​(c) What percentage of organs weighs less than 270 grams or more than 390 grams? ​(d) What percentage of organs weighs between 310 grams and...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 340 grams and a standard deviation of 40 grams. Use the empirical rule to determine the following. ​(a) About 95​% of organs will be between what​ weights? (b) What percentage of organs weighs between 220 grams and 460 grams? (c) What percentage of organs weighs less than 220 grams or more than 460 grams? (d) What percentage of organs weighs between 220 grams and...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 325 grams and a standard deviation of 45 grams. Use the empirical rule to determine the following. ​ ​(d) What percentage of organs weighs between 235 grams and 370 ​grams?
The weight of an organ in adult males has a bell shaped distribution with a mean...
The weight of an organ in adult males has a bell shaped distribution with a mean of 300 grams and a standard deviation of 20 grams. Use the empirical rule to determine the following: a) About 99.7% of organs will be between what 2 weights? b) What percentage of organs weigh between 260 grams and 340 grams? c) What percentage of organs weigh less than 260 grams and more than 340 grams? d) What percentage of organs weigh between 260...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 310 grams and a standard deviation of 45 grams. Use the empirical rule to determine the following. ​ (a) About 68​% of organs will be between what​ weights? ​ (b) What percentage of organs weighs between 220 grams and 400 ​grams? ​ (c) What percentage of organs weighs less than 220 grams or more than 400 ​grams? ​(d) What percentage of organs weighs between...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of...
The weight of an organ in adult males has a​ bell-shaped distribution with a mean of 310 grams and a standard deviation of 20 grams. Use the empirical rule to determine the following. ​(a) About 95​% of organs will be between what​ weights? ​(b) What percentage of organs weighs between 250 grams and 370 grams? ​(c) What percentage of organs weighs less than 250 grams or more than 370 ​grams? ​(d) What percentage of organs weighs between 250 grams and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT