Question

In: Mechanical Engineering

Hot exhaust gases, which enter a tube heat exchanger with cross-flow fins (both unmixed fluids) at...

Hot exhaust gases, which enter a tube heat exchanger with cross-flow fins (both
unmixed fluids) at 1.5 kg/s and 250 oC, are used to heat pressurized water at a speed
of 1.0 kg/s and 35 oC. The specific heat of the exhaust gas is 1.0 kJ/kg K, and the
overall heat transfer coefficient based on the surface area of the gas side is Uh = 100
22
W/m K and Ah = 40 m . Calculate heat transfer for heat exchanger and gas and
water outlet temperatures.

Solutions

Expert Solution

A thumbs up, pls !!


Related Solutions

LMTD of a cross-flow heat exchanger is
LMTD of a cross-flow heat exchanger is
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
HEAT TRANSFER: HEAT EXCHANGER Oil flows in a heat exchanger with a mass flow rate of...
HEAT TRANSFER: HEAT EXCHANGER Oil flows in a heat exchanger with a mass flow rate of 20 kg/s and is to be cooled from 175 to 65°C with water as a coolant flowing at a rate of 30 kg/s and an inlet temperature of 12°C. The overall heat transfer coefficient is U = 1250 W/m2⋅K. a) Sketch the temperature profile and calculate the mean temperature for parallel flow, counter flow, and cross flow heat exchangers.. b) Determine the area required...
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene....
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene. Toulene: T(in)=100F, T(out)=257F, flowrate=125000Ib/hr P(in)=90Psia composition:100% Toluene. Styrene: T(in)=300F, T(out)=176F, P(in)=50psia composition:100% Styrene What is the mass flow rate of Styrene? Which fluid should be in the shell side and which should be in the tube side and why?
In a thermofluids lab, a student is analysing a prototype single-pass cross-flow heat exchanger used to...
In a thermofluids lab, a student is analysing a prototype single-pass cross-flow heat exchanger used to cool water from 90oC to 60oC by transferring its heat to an air stream with an inlet temperature of 30oC without mixing. The water and air flow rates are 42,000 kg/h and 180,000 kg/h respectively. Assume that for the water cp=4.18kJ/kg⋅oC and for the air cp=1.02kJ/kg⋅oC. Calculate the log mean temperature difference for this heat exchanger.
HEAT TRANSFER QUESTION A shell-and-tube heat exchanger with one shell pass and four tube passes, that...
HEAT TRANSFER QUESTION A shell-and-tube heat exchanger with one shell pass and four tube passes, that contains 190 pipes (thin walled, 4m long, 2.6 cm diameter), will be used to heat the air. Water enters the pipes at 350 K with 8kg/s mass flow rate while the air enters the shell at 15 C with 18kg/s mass flow rate. In time there will be a fouling factor of 0.0026m2K/W on the inside of pipes. Inside heat transfer coefficient is 450...
Heat transfer question A shell-and-tube heat exchanger is used to heat a liquid that flows in...
Heat transfer question A shell-and-tube heat exchanger is used to heat a liquid that flows in tubes of inside and outside diameters Di=10 mm and Do=11 mm. You have been asked to choose the most cost-efficient material for the tubes. Material A has a density ρA=8900 kg/m3 and a thermal conductivity kA= 10 W/m·K. Material B has a density ρB=1780 kg/m3 and a thermal conductivity kB=0.17 W/m·K. The cost of material A per unit mass is three times the cost...
Air (Cp = 1.005 kJ/kg · K) is to be preheated by hot exhaust gases in...
Air (Cp = 1.005 kJ/kg · K) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20◦C at a rate of 0.90 kg/s. The combustion gases (Cp = 1.1 kJ/kg · K) enter at a rate of 1.1 kg/s and 150◦C. The product of the overall heat transfer coefficient and the heat transfer surface area is U A = 1200 W/K. Assuming...
Heat transfer In a test in a double tube heat exchanger the following data are obtained...
Heat transfer In a test in a double tube heat exchanger the following data are obtained For hot fluid Flow = 11.6 gal / sec Outlet temperature = 30.1 ° C Inlet temperature = 32 ° C For cold fluid Flow 11gal / min Outlet temperature 25.1 ° C Inlet temperature 24.2 ° C For the fluid consider k = 0.49 w / mK cp = 3729.95 J / kgK Prandtl number = 14.29 Density = 1035.02kg / m3 Get:...
Heat transfer in a test in a double tube heat exchanger the following data are obtained...
Heat transfer in a test in a double tube heat exchanger the following data are obtained For hot fluid Flow = 11.6 gal / sec Outlet temperature = 30.1 ° C Inlet temperature = 32 ° C For cold fluid Flow 11gal / min Outlet temperature 25.1 ° C Inlet temperature 24.2 ° C For the fluid consider k = 0.49 w / mK cp = 3729.95 J / kgK Prandtl number = 14.29 Density = 1035.02kg / m3 Get:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT