Question

In: Mechanical Engineering

Air (Cp = 1.005 kJ/kg · K) is to be preheated by hot exhaust gases in...

Air (Cp = 1.005 kJ/kg · K) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20◦C at a rate of 0.90 kg/s. The combustion gases (Cp = 1.1 kJ/kg · K) enter at a rate of 1.1 kg/s and 150◦C. The product of the overall heat transfer coefficient and the heat transfer surface area is U A = 1200 W/K. Assuming both fluids to be unmixed, use the effectiveness-NTU method to determine

(a) the heat exchanger effectiveness,

(b) the rate of heat transfer, and

(c) the exit temperature of the exhaust gases.

Solutions

Expert Solution


Related Solutions

Air (cp = 1.0 kJ/kgK) enters an air conditioning system at 40C with a mass flow...
Air (cp = 1.0 kJ/kgK) enters an air conditioning system at 40C with a mass flow rate of 1.5 kg/s. The air is cooled by exchanging heat with a stream of R-134a refrigerant that enters the heat exchanger at -8C and 20% quality, and exits with 100% quality. If 25 kW of heat is transferred out of the air, determine: (40 pts) i) Mass flowrate of R-134a (kg/hr) ii) Exit temperature of air (C) iii) Exit pressure of R-134a (kPa)
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter current heat exchanger at 318 K and is heated by an oil stream entering at 393 K at a rate of 2.85 kg/s (Cp=1.89 kJ/kg. K). The overall U=290 W/m2. K and the area A=20 m2. Calculate the heat transfer rate and the exit water temperature.
A gas with cp = 0.950 kJ/kg-K enters an insulated nozzle at 30oC and a velocity...
A gas with cp = 0.950 kJ/kg-K enters an insulated nozzle at 30oC and a velocity of 8 m/s. The gas exits at a velocity of 100 m/s. Assuming constant specific heats and ideal gas behavior, what is the exit temperature of the gas?
Consider a turbine; working substance is air. cp=1.0 kJ/kgK ,    k=1.4 v1=0.03 ,    v2=0.08 m3/kg ,    ...
Consider a turbine; working substance is air. cp=1.0 kJ/kgK ,    k=1.4 v1=0.03 ,    v2=0.08 m3/kg ,     p1=2.5 bar; state 1 is enterance, state 2 is the exit of the turbine. The turbine is not ideal (isentropic); the air goes through a state change according to pv^n=constant ,      n=1.6 Compute the ideal and actual specific works and turbine efficiency. pvn=constant ,      n=1.6
Water ( ρ= 1000 kg/m3; Cp= 4.2 kJ/kg.K; k= 0.58 W/m.K ) at 1,537 kg/hr and...
Water ( ρ= 1000 kg/m3; Cp= 4.2 kJ/kg.K; k= 0.58 W/m.K ) at 1,537 kg/hr and 26oC enters a 10-mm-diameter smooth tube whose wall temperature is maintained at 79oC. If the water's Nusselt number (Nu) = 375, and the tube length is 7.6, calculate the water outlet temperature,in oC.
Exhaust gases having properties similar to dry air enter a thin-walled square duct exhaust stack at...
Exhaust gases having properties similar to dry air enter a thin-walled square duct exhaust stack at 500 ºC. The stack is made of galvanized iron and is 20 m tall and 0.25 m side. If the gas flow rate is 0.5 kg/s and the stack surface has the outside ambient temperature of 10 ºC estimate: a) the outlet temperature of the exhaust gas b) the heat transfer coefficient c) the rate of heat transfer d) the pressure drop
A stainless steel ball (? = 8055 kg/m3 , CP = 480 J/Kg? K ) of...
A stainless steel ball (? = 8055 kg/m3 , CP = 480 J/Kg? K ) of diameter D = 15cm is removed from the oven at a uniform temperature of 350 Degrees C. The ball is then subjected to the flow of air at 1 atm pressure and 30 degrees C with a velocity of 6m/s. The surface temperature of the ball eventually drops to 250 degrees 250 degrees C. Determine the average convection heat transfer coefficient during this cooling...
Hot exhaust gases, which enter a tube heat exchanger with cross-flow fins (both unmixed fluids) at...
Hot exhaust gases, which enter a tube heat exchanger with cross-flow fins (both unmixed fluids) at 1.5 kg/s and 250 oC, are used to heat pressurized water at a speed of 1.0 kg/s and 35 oC. The specific heat of the exhaust gas is 1.0 kJ/kg K, and the overall heat transfer coefficient based on the surface area of the gas side is Uh = 100 22 W/m K and Ah = 40 m . Calculate heat transfer for heat...
Exhaust gases exit a combustıon test rig at 600°C and flow at 0.1 kg/s along a...
Exhaust gases exit a combustıon test rig at 600°C and flow at 0.1 kg/s along a 5 m length of 4 cm-O.D.2 mm wall-thickness steel tube suspended from the roof of the laboratory.An estimate of the tube wall temperature is required for an ambient temperature of 22°C.Assume that the inside and wall resistances are not negligible ,take into consideration the inside and wall resistances.and that the heat loss from the outside is by natural convection and radiation (ε=0.9 for the...
A hot air balloon has a total mass of 750 kg (not including the air in...
A hot air balloon has a total mass of 750 kg (not including the air in the balloon) and holds a volume of 2.8 x 10^6 L of air. Assume the density of the air outside the balloon to be 1.2 kg/m^3 at a temperature of 20 degrees C and the air pressure is 101.3 kPa inside and outside the balloon. What is the minimum temperature for the air in the balloon to allow for the balloon to float? You...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT