Question

In: Math

An urn contains 10 red and 12 blue balls. They are withdrawn one at a time...

An urn contains 10 red and 12 blue balls. They are withdrawn one at a time without replacement until a total of 4 red balls have been withdrawn. Find the probability that exactly 7 balls withdrawn/

Solutions

Expert Solution

The R shows the red ball and B shows the blue ball. Since we need to draw 7 balls such that last ball is red and out of first 6 balls 3 are also red.

Out of first six balls, 3 must be red and 3 blue so possible number of ways we can draw 3 red balls and 3 blue balls is

Let us calculate the probability of sequence RRRBBBR. Out of 10+12 = 22 balls, 10 are red so probability of getting first red balls is 10/22. After that 9 red balls are remaining out of remaining 21 balls. So the probability of getting second red balls is 9 / 21.Likewise probability of above sequence is

P(RRRBBBR) = (10/22) * (9/21) * (8/20) *(12/19) * (11/18) * (10/17) * (7/16) = (10*9*8*7*12*11*10) / (22*21*20*19*18*17*16)

The probability of each possible 20 sequence will be same as above. So the  probability that exactly 7 balls withdrawn is

20 * (10*9*8*7*12*11*10) / (22*21*20*19*18*17*16) = 0.1548

Answer: 0.1548


Related Solutions

An urn contains 7 red and 10 blue balls. If 4 balls are to be randomly...
An urn contains 7 red and 10 blue balls. If 4 balls are to be randomly selected without replacement, what is the probability that the first 2 selected are red and the last 2 selected are blue? Explain each step ?
An urn contains colored balls;5 red balls, 8 green balls, and 10 blue balls. Suppose ...
An urn contains colored balls;5 red balls, 8 green balls, and 10 blue balls. Suppose  If the 3 balls are drawn one after another without replacement, what is the probability that the colors observed will be Red, Green, Blue in this order?  If the three balls are drawn simultaneously from the urn (without replacement), what is the probability that the selected balls will be all different?
Urn 1 contains 10 red balls, 5 green balls and 12 orange. Inside Urn 2 there...
Urn 1 contains 10 red balls, 5 green balls and 12 orange. Inside Urn 2 there are 7 red, 13 green, and 20 orange balls. Flip a coin to choose the urn, so there is a 55% chance to heads, you pick urn 1. If you pick tails, you pick urn 2. Then pick a ball from one of the urns after you flip. If you choose an orange ball, pick again but do this only once. a) Draw a...
An urn contains 5 red balls and 5 blue balls. ​(a) If 3 balls are selected...
An urn contains 5 red balls and 5 blue balls. ​(a) If 3 balls are selected all at​ once, what is the probability that 2 are blue and 1 is​ red? ​(b) If 3 balls are selected by pulling out a​ ball, noting its​ color, and putting it back in the urn before the next​ section, what is the probability that only the first and third balls drawn are​ blue? ​ (c) If 3 balls are selected one at a...
An urn contains 5 red balls and 6 blue balls. A ball is drawn. If the...
An urn contains 5 red balls and 6 blue balls. A ball is drawn. If the ball is red, it is kept out of the urn and an additional blue ball is added to the urn. Then, a second ball is drawn from the urn. If the ball is blue, then it is put back in the urn and an additional blue ball is added to the urn. Then a second ball is drawn from the urn. If the second...
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at...
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at a time, with replacement, until a red one is obtained. What is the probability that exactly k draws are needed? What is the probability that at least k draws are needed? Define a random variable associated with this experiment. Determine its probability mass function and cumulative distribution function, sketch their graphs. Find the expectation, variance and standard deviation of X.
An urn contains five red balls, six white balls, and seven blue balls, and a sample...
An urn contains five red balls, six white balls, and seven blue balls, and a sample of five balls is drawn at random without replacement. (a) What is the size of the sample space? (b) Compute the probability that the sample contains three red balls, one white ball and one blue ball. (c) Compute the probability that the sample contains at least one ball of each color. (d) Compute the probability that all of the balls in the sample are...
An urn contains 6 red balls, 7 white balls, and 8 blue balls. a) If three...
An urn contains 6 red balls, 7 white balls, and 8 blue balls. a) If three balls are sampled without replacement, find probability that all are different colors b) If three balls are sampled with replacement, find the probability that are different colors. c) i n balls sampled with replacement, find probability that all are red. d) If nballs sampled with replacement, find the probability that all are the same color.
1) An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out...
1) An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out 3 balls at a random, without replacement. You win $2 for each green ball you select and lose $3 for each red ball you select. Let the random variable X denote the amount you win, determine the probability mass function of X. 2) Each of the 60 students in a class belongs to exactly one of the three groups A,B, or C. The membership...
An urn contains 12 red balls, 10 white balls, and 5 black balls. You select theee...
An urn contains 12 red balls, 10 white balls, and 5 black balls. You select theee balls from the urn at random without replacement. Compute the following probabilities: A) You do not select a ball of each color B)You select only res balls
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT