Let ∬[a,b]×[c,d]f(x,y)dA denote the integral of f(x,y)over the
region with a≤x≤b and c≤y≤d. Find ∬[0,1]×[0,1]f(x,y)dA given the
following: ∬[0,1]×[1,5]f(x,y)dA=2, ∬[1,2]×[0,1]f(x,y)dA=−1,
∬[1,2]×[1,5]f(x,y)dA=4, and ∬[0,2]×[0,5]f(x,y)dA=3.
Group of answer choices
2
-2
8
0
None of the above.